lean2/library/hott/equiv.lean

304 lines
12 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jeremy Avigad, Jakob von Raumer
-- Ported from Coq HoTT
import .path .trunc
open path function
-- Equivalences
-- ------------
definition Sect {A B : Type} (s : A → B) (r : B → A) := Πx : A, r (s x) ≈ x
-- -- TODO: need better means of declaring structures
-- -- TODO: note that Coq allows projections to be declared to be coercions on the fly
-- Structure IsEquiv
inductive IsEquiv [class] {A B : Type} (f : A → B) :=
IsEquiv_mk : Π
(inv : B → A)
(retr : Sect inv f)
(sect : Sect f inv)
(adj : Πx, retr (f x) ≈ ap f (sect x)),
IsEquiv f
namespace IsEquiv
definition inv [coercion] {A B : Type} (f : A → B) [H : IsEquiv f] : B → A :=
IsEquiv.rec (λinv retr sect adj, inv) H
-- TODO: note: does not type check without giving the type
definition retr [coercion] {A B : Type} (f : A → B) [H : IsEquiv f] : Sect (inv f) f :=
IsEquiv.rec (λinv retr sect adj, retr) H
definition sect [coercion] {A B : Type} (f : A → B) [H : IsEquiv f] : Sect f (inv f) :=
IsEquiv.rec (λinv retr sect adj, sect) H
definition adj [coercion] {A B : Type} (f : A → B) [H : IsEquiv f] :
Πx, retr f (f x) ≈ ap f (sect f x) :=
IsEquiv.rec (λinv retr sect adj, adj) H
notation e `⁻¹` := inv e
end IsEquiv
-- Structure Equiv
inductive Equiv (A B : Type) : Type :=
Equiv_mk : Π
(equiv_fun : A → B)
(equiv_isequiv : IsEquiv equiv_fun),
Equiv A B
namespace Equiv
definition equiv_fun [coercion] {A B : Type} (e : Equiv A B) : A → B :=
Equiv.rec (λequiv_fun equiv_isequiv, equiv_fun) e
definition equiv_isequiv [coercion] {A B : Type} (e : Equiv A B) : IsEquiv (equiv_fun e) :=
Equiv.rec (λequiv_fun equiv_isequiv, equiv_isequiv) e
infix `≃`:25 := Equiv
end Equiv
-- Some instances and closure properties of equivalences
namespace IsEquiv
variables {A B C : Type} {f : A → B} {g : B → C} {f' : A → B}
-- The identity function is an equivalence.
definition id_closed [instance] : (@IsEquiv A A id) := IsEquiv_mk id (λa, idp) (λa, idp) (λa, idp)
-- The composition of two equivalences is, again, an equivalence.
definition comp_closed (Hf : IsEquiv f) (Hg : IsEquiv g) : (IsEquiv (g ∘ f)) :=
IsEquiv_mk ((inv f) ∘ (inv g))
(λc, ap g (retr f (g⁻¹ c)) ⬝ retr g c)
(λa, ap (inv f) (sect g (f a)) ⬝ sect f a)
(λa, (whiskerL _ (adj g (f a))) ⬝
(ap_pp g _ _)⁻¹ ⬝
ap02 g (concat_A1p (retr f) (sect g (f a))⁻¹ ⬝
(ap_compose (inv f) f _ ◾ adj f a) ⬝
(ap_pp f _ _)⁻¹
) ⬝
(ap_compose f g _)⁻¹
)
-- Any function equal to an equivalence is an equivlance as well.
definition path_closed (Hf : IsEquiv f) (Heq : f ≈ f') : (IsEquiv f') :=
path.rec_on Heq Hf
-- Any function pointwise equal to an equivalence is an equivalence as well.
definition homotopic (Hf : IsEquiv f) (Heq : f f') : (IsEquiv f') :=
let sect' := (λ b, (Heq (inv f b))⁻¹ ⬝ retr f b) in
let retr' := (λ a, (ap (inv f) (Heq a))⁻¹ ⬝ sect f a) in
let adj' := (λ (a : A),
let ff'a := Heq a in
let invf := inv f in
let secta := sect f a in
let retrfa := retr f (f a) in
let retrf'a := retr f (f' a) in
have eq1 : _ ≈ _,
from calc ap f secta ⬝ ff'a
≈ retrfa ⬝ ff'a : (ap _ (adj f _ ))⁻¹
... ≈ ap (f ∘ invf) ff'a ⬝ retrf'a : !concat_A1p⁻¹
... ≈ ap f (ap invf ff'a) ⬝ retr f (f' a) : {ap_compose invf f _},
have eq2 : _ ≈ _,
from calc retrf'a
≈ (ap f (ap invf ff'a))⁻¹ ⬝ (ap f secta ⬝ ff'a) : moveL_Vp _ _ _ (eq1⁻¹)
... ≈ ap f (ap invf ff'a)⁻¹ ⬝ (ap f secta ⬝ Heq a) : {ap_V invf ff'a}
... ≈ ap f (ap invf ff'a)⁻¹ ⬝ (Heq (invf (f a)) ⬝ ap f' secta) : {!concat_Ap}
... ≈ (ap f (ap invf ff'a)⁻¹ ⬝ Heq (invf (f a))) ⬝ ap f' secta : {!concat_pp_p⁻¹}
... ≈ (ap f ((ap invf ff'a)⁻¹) ⬝ Heq (invf (f a))) ⬝ ap f' secta : {!ap_V⁻¹}
... ≈ (Heq (invf (f' a)) ⬝ ap f' ((ap invf ff'a)⁻¹)) ⬝ ap f' secta : {!concat_Ap}
... ≈ (Heq (invf (f' a)) ⬝ (ap f' (ap invf ff'a))⁻¹) ⬝ ap f' secta : {!ap_V}
... ≈ Heq (invf (f' a)) ⬝ ((ap f' (ap invf ff'a))⁻¹ ⬝ ap f' secta) : !concat_pp_p,
have eq3 : _ ≈ _,
from calc (Heq (invf (f' a)))⁻¹ ⬝ retr f (f' a)
≈ (ap f' (ap invf ff'a))⁻¹ ⬝ ap f' secta : moveR_Vp _ _ _ eq2
... ≈ (ap f' ((ap invf ff'a)⁻¹)) ⬝ ap f' secta : {!ap_V⁻¹}
... ≈ ap f' ((ap invf ff'a)⁻¹ ⬝ secta) : !ap_pp⁻¹,
eq3) in
IsEquiv_mk (inv f) sect' retr' adj'
end IsEquiv
namespace IsEquiv
variables {A B : Type} (f : A → B) (g : B → A)
(ret : Sect g f) (sec : Sect f g)
context
set_option unifier.max_steps 30000
--To construct an equivalence it suffices to state the proof that the inverse is a quasi-inverse.
definition adjointify : IsEquiv f :=
let sect' := (λx, ap g (ap f (inverse (sec x))) ⬝ ap g (ret (f x)) ⬝ sec x) in
let adj' := (λ (a : A),
let fgretrfa := ap f (ap g (ret (f a))) in
let fgfinvsect := ap f (ap g (ap f ((sec a)⁻¹))) in
let fgfa := f (g (f a)) in
let retrfa := ret (f a) in
have eq1 : ap f (sec a) ≈ _,
from calc ap f (sec a)
≈ idp ⬝ ap f (sec a) : !concat_1p⁻¹
... ≈ (ret (f a) ⬝ (ret (f a)⁻¹)) ⬝ ap f (sec a) : {!concat_pV⁻¹}
... ≈ ((ret (fgfa))⁻¹ ⬝ ap (f ∘ g) (ret (f a))) ⬝ ap f (sec a) : {!concat_pA1⁻¹}
... ≈ ((ret (fgfa))⁻¹ ⬝ fgretrfa) ⬝ ap f (sec a) : {ap_compose g f _}
... ≈ (ret (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)) : !concat_pp_p,
have eq2 : ap f (sec a) ⬝ idp ≈ (ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)),
from !concat_p1 ⬝ eq1,
have eq3 : idp ≈ _,
from calc idp
≈ (ap f (sec a))⁻¹ ⬝ ((ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a))) : moveL_Vp _ _ _ eq2
... ≈ (ap f (sec a)⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ (fgretrfa ⬝ ap f (sec a)) : !concat_p_pp
... ≈ (ap f ((sec a)⁻¹) ⬝ (ret fgfa)⁻¹) ⬝ (fgretrfa ⬝ ap f (sec a)) : {!ap_V⁻¹}
... ≈ ((ap f ((sec a)⁻¹) ⬝ (ret fgfa)⁻¹) ⬝ fgretrfa) ⬝ ap f (sec a) : !concat_p_pp
... ≈ ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f ((sec a)⁻¹))) ⬝ fgretrfa) ⬝ ap f (sec a) : {!concat_pA1⁻¹}
... ≈ ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sec a) : {ap_compose g f _}
... ≈ (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sec a) : {!concat_p_pp⁻¹}
... ≈ retrfa⁻¹ ⬝ ap f (ap g (ap f ((sec a)⁻¹)) ⬝ ap g (ret (f a))) ⬝ ap f (sec a) : {!ap_pp⁻¹}
... ≈ retrfa⁻¹ ⬝ (ap f (ap g (ap f ((sec a)⁻¹)) ⬝ ap g (ret (f a))) ⬝ ap f (sec a)) : !concat_p_pp⁻¹
... ≈ retrfa⁻¹ ⬝ ap f ((ap g (ap f ((sec a)⁻¹)) ⬝ ap g (ret (f a))) ⬝ sec a) : {!ap_pp⁻¹},
have eq4 : ret (f a) ≈ ap f ((ap g (ap f ((sec a)⁻¹)) ⬝ ap g (ret (f a))) ⬝ sec a),
from moveR_M1 _ _ eq3,
eq4) in
IsEquiv_mk g ret sect' adj'
end
end IsEquiv
namespace IsEquiv
variables {A B: Type} {f : A → B}
--The inverse of an equivalence is, again, an equivalence.
definition inv_closed (Hf : IsEquiv f) : (IsEquiv (inv f)) :=
adjointify (inv f) f (sect f) (retr f)
end IsEquiv
namespace IsEquiv
variables {A B C : Type} {f : A → B} {g : B → C} {f' : A → B}
definition cancel_R (Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv g) :=
homotopic (comp_closed (inv_closed Hf) Hgf) (λb, ap g (retr f b))
definition cancel_L (Hg : IsEquiv g) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv f) :=
homotopic (comp_closed Hgf (inv_closed Hg)) (λa, sect g (f a))
--Transporting is an equivalence
definition transport [instance] (P : A → Type) {x y : A} (p : x ≈ y) : (IsEquiv (transport P p)) :=
IsEquiv_mk (transport P (p⁻¹)) (transport_pV P p) (transport_Vp P p) (transport_pVp P p)
--Rewrite rules
section
definition moveR_M (Hf : IsEquiv f) {x : A} {y : B} (p : x ≈ (inv f) y) : (f x ≈ y) :=
(ap f p) ⬝ (retr f y)
definition moveL_M (Hf : IsEquiv f) {x : A} {y : B} (p : (inv f) y ≈ x) : (y ≈ f x) :=
(moveR_M Hf (p⁻¹))⁻¹
definition moveR_V (Hf : IsEquiv f) {x : B} {y : A} (p : x ≈ f y) : (inv f) x ≈ y :=
ap (inv f) p ⬝ sect f y
definition moveL_V (Hf : IsEquiv f) {x : B} {y : A} (p : f y ≈ x) : y ≈ (inv f) x :=
(moveR_V Hf (p⁻¹))⁻¹
definition contr (Hf : IsEquiv f) (HA: Contr A) : (Contr B) :=
Contr.Contr_mk (f (center HA)) (λb, moveR_M Hf (contr HA (inv f b)))
definition ap_closed (Hf : IsEquiv f) (x y : A) : IsEquiv (@ap A B f x y) :=
adjointify (ap f)
(λq, (inverse (sect f x)) ⬝ ap (f⁻¹) q ⬝ sect f y)
(λq, !ap_pp
⬝ whiskerR !ap_pp _
⬝ ((!ap_V ⬝ inverse2 ((adj f _)⁻¹))
◾ (inverse (ap_compose (f⁻¹) f _))
◾ (adj f _)⁻¹)
⬝ concat_pA1_p (retr f) _ _
⬝ whiskerR !concat_Vp _
⬝ !concat_1p)
(λp, whiskerR (whiskerL _ ((ap_compose f (f⁻¹) _)⁻¹)) _
⬝ concat_pA1_p (sect f) _ _
⬝ whiskerR !concat_Vp _
⬝ !concat_1p)
-- The function equiv_rect says that given an equivalence f : A → B,
-- and a hypothesis from B, one may always assume that the hypothesis
-- is in the image of e.
-- In fibrational terms, if we have a fibration over B which has a section
-- once pulled back along an equivalence f : A → B, then it has a section
-- over all of B.
definition equiv_rect (Hf : IsEquiv f) (P : B -> Type) :
(Πx, P (f x)) → (Πy, P y) :=
(λg y, path.transport _ (retr f y) (g (f⁻¹ y)))
definition equiv_rect_comp (Hf : IsEquiv f) (P : B → Type)
(df : Π (x : A), P (f x)) (x : A) : equiv_rect Hf P df (f x) ≈ df x :=
let eq1 := (apD df (sect f x)) in
calc equiv_rect Hf P df (f x)
≈ path.transport P (retr f (f x)) (df (f⁻¹ (f x))) : idp
... ≈ path.transport P (ap f (sect f x)) (df (f⁻¹ (f x))) : adj f
... ≈ path.transport (P ∘ f) (sect f x) (df (f⁻¹ (f x))) : transport_compose
... ≈ df x : eq1
end
end IsEquiv
namespace Equiv
variables {A B C : Type} (eqf : A ≃ B)
definition f : A → B := equiv_fun eqf
definition id : A ≃ A := Equiv_mk id IsEquiv.id_closed
theorem compose (eqg: B ≃ C) : A ≃ C :=
Equiv_mk ((equiv_fun eqg) ∘ (equiv_fun eqf))
(IsEquiv.comp_closed (equiv_isequiv eqf) (equiv_isequiv eqg))
theorem path_closed (f' : A → B) (Heq : equiv_fun eqf ≈ f') : A ≃ B :=
Equiv_mk f' (IsEquiv.path_closed (equiv_isequiv eqf) Heq)
theorem inv_closed : B ≃ A :=
Equiv_mk (@IsEquiv.inv _ _ (equiv_fun eqf) (equiv_isequiv eqf))
(IsEquiv.inv_closed (equiv_isequiv eqf))
theorem cancel_L {f : A → B} {g : B → C}
(Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : B ≃ C :=
Equiv_mk g (IsEquiv.cancel_R _ _)
theorem cancel_R {f : A → B} {g : B → C}
(Hg : IsEquiv g) (Hgf : IsEquiv (g ∘ f)) : A ≃ B :=
Equiv_mk f (!IsEquiv.cancel_L _ _)
theorem transport (P : A → Type) {x y : A} {p : x ≈ y} : (P x) ≃ (P y) :=
Equiv_mk (transport P p) (IsEquiv.transport P p)
theorem contr_closed (HA: Contr A) : (Contr B) :=
@IsEquiv.contr A B (equiv_fun eqf) (equiv_isequiv eqf) HA
-- calc enviroment
-- TODO: find a transport lemma?
-- calc_subst transport
calc_trans compose
calc_refl id
calc_symm inv_closed
end Equiv
namespace Equiv
variables {A B : Type} {HA : Contr A} {HB : Contr B}
--Each two contractible types are equivalent.
definition contr_contr : A ≃ B :=
Equiv_mk
(λa, center HB)
(IsEquiv.adjointify (λa, center HB) (λb, center HA)
(contr HB) (contr HA))
end Equiv