8e52c478b1
rename is_inhabited theorems
89 lines
3.4 KiB
Text
89 lines
3.4 KiB
Text
----------------------------------------------------------------------------------------------------
|
|
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
|
-- Author: Leonardo de Moura
|
|
----------------------------------------------------------------------------------------------------
|
|
import logic.classes.inhabited data.bool
|
|
open bool
|
|
|
|
-- pos_num and num are two auxiliary datatypes used when parsing numerals such as 13, 0, 26.
|
|
-- The parser will generate the terms (pos (bit1 (bit1 (bit0 one)))), zero, and (pos (bit0 (bit1 (bit1 one)))).
|
|
-- This representation can be coerced in whatever we want (e.g., naturals, integers, reals, etc).
|
|
inductive pos_num : Type :=
|
|
one : pos_num,
|
|
bit1 : pos_num → pos_num,
|
|
bit0 : pos_num → pos_num
|
|
|
|
theorem pos_num.is_inhabited [instance] : inhabited pos_num :=
|
|
inhabited.mk pos_num.one
|
|
|
|
namespace pos_num
|
|
theorem induction_on [protected] {P : pos_num → Prop} (a : pos_num)
|
|
(H₁ : P one) (H₂ : ∀ (n : pos_num), P n → P (bit1 n)) (H₃ : ∀ (n : pos_num), P n → P (bit0 n)) : P a :=
|
|
rec H₁ H₂ H₃ a
|
|
|
|
abbreviation rec_on [protected] {P : pos_num → Type} (a : pos_num)
|
|
(H₁ : P one) (H₂ : ∀ (n : pos_num), P n → P (bit1 n)) (H₃ : ∀ (n : pos_num), P n → P (bit0 n)) : P a :=
|
|
rec H₁ H₂ H₃ a
|
|
|
|
abbreviation succ (a : pos_num) : pos_num :=
|
|
rec_on a (bit0 one) (λn r, bit0 r) (λn r, bit1 n)
|
|
|
|
abbreviation is_one (a : pos_num) : bool :=
|
|
rec_on a tt (λn r, ff) (λn r, ff)
|
|
|
|
abbreviation pred (a : pos_num) : pos_num :=
|
|
rec_on a one (λn r, bit0 n) (λn r, cond (is_one n) one (bit1 r))
|
|
|
|
abbreviation size (a : pos_num) : pos_num :=
|
|
rec_on a one (λn r, succ r) (λn r, succ r)
|
|
|
|
theorem succ_not_is_one {a : pos_num} : is_one (succ a) = ff :=
|
|
induction_on a rfl (take n iH, rfl) (take n iH, rfl)
|
|
|
|
theorem pred_succ {a : pos_num} : pred (succ a) = a :=
|
|
rec_on a
|
|
rfl
|
|
(take (n : pos_num) (iH : pred (succ n) = n),
|
|
calc
|
|
pred (succ (bit1 n)) = cond ff one (bit1 (pred (succ n))) : {succ_not_is_one}
|
|
... = bit1 (pred (succ n)) : rfl
|
|
... = bit1 n : {iH})
|
|
(take (n : pos_num) (iH : pred (succ n) = n), rfl)
|
|
end pos_num
|
|
|
|
inductive num : Type :=
|
|
zero : num,
|
|
pos : pos_num → num
|
|
|
|
theorem num.is_inhabited [instance] : inhabited num :=
|
|
inhabited.mk num.zero
|
|
|
|
namespace num
|
|
open pos_num
|
|
theorem induction_on [protected] {P : num → Prop} (a : num)
|
|
(H₁ : P zero) (H₂ : ∀ (p : pos_num), P (pos p)) : P a :=
|
|
rec H₁ H₂ a
|
|
|
|
abbreviation rec_on [protected] {P : num → Type} (a : num)
|
|
(H₁ : P zero) (H₂ : ∀ (p : pos_num), P (pos p)) : P a :=
|
|
rec H₁ H₂ a
|
|
|
|
abbreviation succ (a : num) : num :=
|
|
rec_on a (pos one) (λp, pos (succ p))
|
|
|
|
abbreviation pred (a : num) : num :=
|
|
rec_on a zero (λp, cond (is_one p) zero (pos (pred p)))
|
|
|
|
abbreviation size (a : num) : num :=
|
|
rec_on a (pos one) (λp, pos (size p))
|
|
|
|
theorem pred_succ (a : num) : pred (succ a) = a :=
|
|
rec_on a
|
|
rfl
|
|
(λp, calc
|
|
pred (succ (pos p)) = pred (pos (pos_num.succ p)) : rfl
|
|
... = cond ff zero (pos (pos_num.pred (pos_num.succ p))) : {succ_not_is_one}
|
|
... = pos (pos_num.pred (pos_num.succ p)) : cond_ff _ _
|
|
... = pos p : {pos_num.pred_succ})
|
|
end num
|