lean2/hott/homotopy/connectedness.hlean

315 lines
11 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Ulrik Buchholtz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ulrik Buchholtz, Floris van Doorn
-/
import types.trunc types.arrow_2 .sphere
open eq is_trunc is_equiv nat equiv trunc function fiber funext pi
namespace homotopy
definition is_conn [reducible] (n : ℕ₋₂) (A : Type) : Type :=
is_contr (trunc n A)
definition is_conn_equiv_closed (n : ℕ₋₂) {A B : Type}
: A ≃ B → is_conn n A → is_conn n B :=
begin
intros H C,
fapply @is_contr_equiv_closed (trunc n A) _,
apply trunc_equiv_trunc,
assumption
end
definition is_conn_fun [reducible] (n : ℕ₋₂) {A B : Type} (f : A → B) : Type :=
Πb : B, is_conn n (fiber f b)
theorem is_conn_of_le (A : Type) {n k : ℕ₋₂} (H : n ≤ k) [is_conn k A] : is_conn n A :=
begin
apply is_contr_equiv_closed,
apply trunc_trunc_equiv_left _ n k H
end
theorem is_conn_fun_of_le {A B : Type} (f : A → B) {n k : ℕ₋₂} (H : n ≤ k)
[is_conn_fun k f] : is_conn_fun n f :=
λb, is_conn_of_le _ H
namespace is_conn_fun
section
parameters (n : ℕ₋₂) {A B : Type} {h : A → B}
(H : is_conn_fun n h) (P : B → Type) [Πb, is_trunc n (P b)]
private definition rec.helper : (Πa : A, P (h a)) → Πb : B, trunc n (fiber h b) → P b :=
λt b, trunc.rec (λx, point_eq x ▸ t (point x))
private definition rec.g : (Πa : A, P (h a)) → (Πb : B, P b) :=
λt b, rec.helper t b (@center (trunc n (fiber h b)) (H b))
-- induction principle for n-connected maps (Lemma 7.5.7)
protected definition rec : is_equiv (λs : Πb : B, P b, λa : A, s (h a)) :=
adjointify (λs a, s (h a)) rec.g
begin
intro t, apply eq_of_homotopy, intro a, unfold rec.g, unfold rec.helper,
rewrite [@center_eq _ (H (h a)) (tr (fiber.mk a idp))],
end
begin
intro k, apply eq_of_homotopy, intro b, unfold rec.g,
generalize (@center _ (H b)), apply trunc.rec, apply fiber.rec,
intros a p, induction p, reflexivity
end
protected definition elim : (Πa : A, P (h a)) → (Πb : B, P b) :=
@is_equiv.inv _ _ (λs a, s (h a)) rec
protected definition elim_β : Πf : (Πa : A, P (h a)), Πa : A, elim f (h a) = f a :=
λf, apd10 (@is_equiv.right_inv _ _ (λs a, s (h a)) rec f)
end
section
parameters (n k : ℕ₋₂) {A B : Type} {f : A → B}
(H : is_conn_fun n f) (P : B → Type) [HP : Πb, is_trunc (n +2+ k) (P b)]
include H HP
-- Lemma 8.6.1
proposition elim_general : is_trunc_fun k (pi_functor_left f P) :=
begin
revert P HP,
induction k with k IH: intro P HP t,
{ apply is_contr_fiber_of_is_equiv, apply is_conn_fun.rec, exact H, exact HP},
{ apply is_trunc_succ_intro,
intros x y, cases x with g p, cases y with h q,
have e : fiber (λr : g ~ h, (λa, r (f a))) (apd10 (p ⬝ q⁻¹))
≃ (fiber.mk g p = fiber.mk h q
:> fiber (λs : (Πb, P b), (λa, s (f a))) t),
begin
apply equiv.trans !fiber.sigma_char,
have e' : Πr : g ~ h,
((λa, r (f a)) = apd10 (p ⬝ q⁻¹))
≃ (ap (λv, (λa, v (f a))) (eq_of_homotopy r) ⬝ q = p),
begin
intro r,
refine equiv.trans _ (eq_con_inv_equiv_con_eq q p
(ap (λv a, v (f a)) (eq_of_homotopy r))),
rewrite [-(ap (λv a, v (f a)) (apd10_eq_of_homotopy r))],
rewrite [-(apd10_ap_precompose_dependent f (eq_of_homotopy r))],
apply equiv.symm,
apply eq_equiv_fn_eq (@apd10 A (λa, P (f a)) (λa, g (f a)) (λa, h (f a)))
end,
apply equiv.trans (sigma.sigma_equiv_sigma_right e'), clear e',
apply equiv.trans (equiv.symm (sigma.sigma_equiv_sigma_left
eq_equiv_homotopy)),
apply equiv.symm, apply equiv.trans !fiber_eq_equiv,
apply sigma.sigma_equiv_sigma_right, intro r,
apply eq_equiv_eq_symm
end,
apply @is_trunc_equiv_closed _ _ k e, clear e,
apply IH (λb : B, (g b = h b)) (λb, @is_trunc_eq (P b) (n +2+ k) (HP b) (g b) (h b))}
end
end
section
universe variables u v
parameters (n : ℕ₋₂) {A : Type.{u}} {B : Type.{v}} {h : A → B}
parameter sec : ΠP : B → trunctype.{max u v} n,
is_retraction (λs : (Πb : B, P b), λ a, s (h a))
private definition s := sec (λb, trunctype.mk' n (trunc n (fiber h b)))
include sec
-- the other half of Lemma 7.5.7
definition intro : is_conn_fun n h :=
begin
intro b,
apply is_contr.mk (@is_retraction.sect _ _ _ s (λa, tr (fiber.mk a idp)) b),
esimp, apply trunc.rec, apply fiber.rec, intros a p,
apply transport
(λz : (Σy, h a = y), @sect _ _ _ s (λa, tr (mk a idp)) (sigma.pr1 z) =
tr (fiber.mk a (sigma.pr2 z)))
(@center_eq _ (is_contr_sigma_eq (h a)) (sigma.mk b p)),
exact apd10 (@right_inverse _ _ _ s (λa, tr (fiber.mk a idp))) a
end
end
end is_conn_fun
-- Connectedness is related to maps to and from the unit type, first to
section
parameters (n : ℕ₋₂) (A : Type)
definition is_conn_of_map_to_unit
: is_conn_fun n (const A unit.star) → is_conn n A :=
begin
intro H, unfold is_conn_fun at H,
rewrite [-(ua (fiber.fiber_star_equiv A))],
exact (H unit.star)
end
-- now maps from unit
definition is_conn_of_map_from_unit (a₀ : A) (H : is_conn_fun n (const unit a₀))
: is_conn n .+1 A :=
is_contr.mk (tr a₀)
begin
apply trunc.rec, intro a,
exact trunc.elim (λz : fiber (const unit a₀) a, ap tr (point_eq z))
(@center _ (H a))
end
definition is_conn_fun_from_unit (a₀ : A) [H : is_conn n .+1 A]
: is_conn_fun n (const unit a₀) :=
begin
intro a,
apply is_conn_equiv_closed n (equiv.symm (fiber_const_equiv A a₀ a)),
apply @is_contr_equiv_closed _ _ (tr_eq_tr_equiv n a₀ a),
end
end
-- as special case we get elimination principles for pointed connected types
namespace is_conn
open pointed unit
section
parameters (n : ℕ₋₂) {A : Type*}
[H : is_conn n .+1 A] (P : A → Type) [Πa, is_trunc n (P a)]
include H
protected definition rec : is_equiv (λs : Πa : A, P a, s (Point A)) :=
@is_equiv_compose
(Πa : A, P a) (unit → P (Point A)) (P (Point A))
(λs x, s (Point A)) (λf, f unit.star)
(is_conn_fun.rec n (is_conn_fun_from_unit n A (Point A)) P)
(to_is_equiv (arrow_unit_left (P (Point A))))
protected definition elim : P (Point A) → (Πa : A, P a) :=
@is_equiv.inv _ _ (λs, s (Point A)) rec
protected definition elim_β (p : P (Point A)) : elim p (Point A) = p :=
@is_equiv.right_inv _ _ (λs, s (Point A)) rec p
end
section
parameters (n k : ℕ₋₂) {A : Type*}
[H : is_conn n .+1 A] (P : A → Type) [Πa, is_trunc (n +2+ k) (P a)]
include H
proposition elim_general (p : P (Point A))
: is_trunc k (fiber (λs : (Πa : A, P a), s (Point A)) p) :=
@is_trunc_equiv_closed
(fiber (λs x, s (Point A)) (λx, p))
(fiber (λs, s (Point A)) p)
k
(equiv.symm (fiber.equiv_postcompose (to_fun (arrow_unit_left (P (Point A))))))
(is_conn_fun.elim_general n k (is_conn_fun_from_unit n A (Point A)) P (λx, p))
end
end is_conn
-- Lemma 7.5.2
definition minus_one_conn_of_surjective {A B : Type} (f : A → B)
: is_surjective f → is_conn_fun -1 f :=
begin
intro H, intro b,
exact @is_contr_of_inhabited_prop (∥fiber f b∥) (is_trunc_trunc -1 (fiber f b)) (H b),
end
definition is_surjection_of_minus_one_conn {A B : Type} (f : A → B)
: is_conn_fun -1 f → is_surjective f :=
begin
intro H, intro b,
exact @center (∥fiber f b∥) (H b),
end
definition merely_of_minus_one_conn {A : Type} : is_conn -1 A → ∥A∥ :=
λH, @center (∥A∥) H
definition minus_one_conn_of_merely {A : Type} : ∥A∥ → is_conn -1 A :=
@is_contr_of_inhabited_prop (∥A∥) (is_trunc_trunc -1 A)
section
open arrow
variables {f g : arrow}
-- Lemma 7.5.4
definition retract_of_conn_is_conn [instance] (r : arrow_hom f g) [H : is_retraction r]
(n : ℕ₋₂) [K : is_conn_fun n f] : is_conn_fun n g :=
begin
intro b, unfold is_conn,
apply is_contr_retract (trunc_functor n (retraction_on_fiber r b)),
exact K (on_cod (arrow.is_retraction.sect r) b)
end
end
-- Corollary 7.5.5
definition is_conn_homotopy (n : ℕ₋₂) {A B : Type} {f g : A → B}
(p : f ~ g) (H : is_conn_fun n f) : is_conn_fun n g :=
@retract_of_conn_is_conn _ _ (arrow.arrow_hom_of_homotopy p) (arrow.is_retraction_arrow_hom_of_homotopy p) n H
-- all types are -2-connected
definition is_conn_minus_two (A : Type) : is_conn -2 A :=
_
-- Theorem 8.2.1
open susp
theorem is_conn_susp [instance] (n : ℕ₋₂) (A : Type)
[H : is_conn n A] : is_conn (n .+1) (susp A) :=
is_contr.mk (tr north)
begin
apply trunc.rec,
fapply susp.rec,
{ reflexivity },
{ exact (trunc.rec (λa, ap tr (merid a)) (center (trunc n A))) },
{ intro a,
generalize (center (trunc n A)),
apply trunc.rec,
intro a',
apply pathover_of_tr_eq,
rewrite [transport_eq_Fr,idp_con],
revert H, induction n with [n, IH],
{ intro H, apply is_prop.elim },
{ intros H,
change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a'),
generalize a',
apply is_conn_fun.elim n
(is_conn_fun_from_unit n A a)
(λx : A, trunctype.mk' n (ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid x))),
intros,
change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a),
reflexivity
}
}
end
-- Lemma 7.5.14
theorem is_equiv_trunc_functor_of_is_conn_fun {A B : Type} (n : ℕ₋₂) (f : A → B)
[H : is_conn_fun n f] : is_equiv (trunc_functor n f) :=
begin
fapply adjointify,
{ intro b, induction b with b, exact trunc_functor n point (center (trunc n (fiber f b)))},
{ intro b, induction b with b, esimp, generalize center (trunc n (fiber f b)), intro v,
induction v with v, induction v with a p, esimp, exact ap tr p},
{ intro a, induction a with a, esimp, rewrite [center_eq (tr (fiber.mk a idp))]}
end
theorem trunc_equiv_trunc_of_is_conn_fun {A B : Type} (n : ℕ₋₂) (f : A → B)
[H : is_conn_fun n f] : trunc n A ≃ trunc n B :=
equiv.mk (trunc_functor n f) (is_equiv_trunc_functor_of_is_conn_fun n f)
open trunc_index pointed sphere.ops
-- Corollary 8.2.2
theorem is_conn_sphere [instance] (n : ℕ₋₁) : is_conn (n..-1) (S n) :=
begin
induction n with n IH,
{ apply is_conn_minus_two},
{ rewrite [succ_sub_one, sphere.sphere_succ], apply is_conn_susp}
end
section
open sphere_index
theorem is_conn_psphere [instance] (n : ) : is_conn (n.-1) (S. n) :=
transport (λx, is_conn x (sphere n)) (of_nat_sub_one n) (is_conn_sphere n)
end
end homotopy