lean2/hott/types/trunc.hlean

201 lines
7.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: types.trunc
Authors: Floris van Doorn
Properties of is_trunc and trunctype
-/
--NOTE: the fact that (is_trunc n A) is a mere proposition is proved in .hprop_trunc
import types.pi types.eq types.equiv .function
open eq sigma sigma.ops pi function equiv is_trunc.trunctype is_equiv prod
namespace is_trunc
variables {A B : Type} {n : trunc_index}
definition is_trunc_succ_of_imp_is_trunc_succ (H : A → is_trunc (n.+1) A) : is_trunc (n.+1) A :=
@is_trunc_succ_intro _ _ (λx y, @is_trunc_eq _ _ (H x) x y)
definition is_trunc_of_imp_is_trunc_of_leq (Hn : -1 ≤ n) (H : A → is_trunc n A) : is_trunc n A :=
trunc_index.rec_on n (λHn H, empty.rec _ Hn)
(λn IH Hn, is_trunc_succ_of_imp_is_trunc_succ)
Hn H
/- theorems about trunctype -/
protected definition trunctype.sigma_char.{l} (n : trunc_index) :
(trunctype.{l} n) ≃ (Σ (A : Type.{l}), is_trunc n A) :=
begin
fapply equiv.MK,
{ intro A, exact (⟨carrier A, struct A⟩)},
{ intro S, exact (trunctype.mk S.1 S.2)},
{ intro S, apply (sigma.rec_on S), intro S1 S2, apply idp},
{ intro A, apply (trunctype.rec_on A), intro A1 A2, apply idp},
end
definition trunctype_eq_equiv (n : trunc_index) (A B : n-Type) :
(A = B) ≃ (carrier A = carrier B) :=
calc
(A = B) ≃ (to_fun (trunctype.sigma_char n) A = to_fun (trunctype.sigma_char n) B)
: eq_equiv_fn_eq_of_equiv
... ≃ ((to_fun (trunctype.sigma_char n) A).1 = (to_fun (trunctype.sigma_char n) B).1)
: equiv.symm (!equiv_subtype)
... ≃ (carrier A = carrier B) : equiv.refl
definition is_trunc_is_embedding_closed (f : A → B) [Hf : is_embedding f] [HB : is_trunc n B]
(Hn : -1 ≤ n) : is_trunc n A :=
begin
cases n with n,
{exact !empty.elim Hn},
{apply is_trunc_succ_intro, intro a a',
fapply @is_trunc_is_equiv_closed_rev _ _ n (ap f)}
end
definition is_trunc_is_retraction_closed (f : A → B) [Hf : is_retraction f]
(n : trunc_index) [HA : is_trunc n A] : is_trunc n B :=
begin
revert A B f Hf HA,
eapply (trunc_index.rec_on n),
{ clear n, intro A B f Hf HA, cases Hf with g ε, fapply is_contr.mk,
{ exact f (center A)},
{ intro b, apply concat,
{ apply (ap f), exact (center_eq (g b))},
{ apply ε}}},
{ clear n, intro n IH A B f Hf HA, cases Hf with g ε,
apply is_trunc_succ_intro, intro b b',
fapply (IH (g b = g b')),
{ intro q, exact ((ε b)⁻¹ ⬝ ap f q ⬝ ε b')},
{ apply (is_retraction.mk (ap g)),
{ intro p, cases p, {rewrite [↑ap, con_idp, con.left_inv]}}},
{ apply is_trunc_eq}}
end
definition is_embedding_to_fun (A B : Type) : is_embedding (@to_fun A B) :=
is_embedding.mk (λf f', !is_equiv_ap_to_fun)
definition is_trunc_trunctype [instance] (n : trunc_index) : is_trunc n.+1 (n-Type) :=
begin
apply is_trunc_succ_intro, intro X Y,
fapply is_trunc_equiv_closed,
{apply equiv.symm, apply trunctype_eq_equiv},
fapply is_trunc_equiv_closed,
{apply equiv.symm, apply eq_equiv_equiv},
cases n,
{apply @is_contr_of_inhabited_hprop,
{apply is_trunc_is_embedding_closed,
{apply is_embedding_to_fun} ,
{exact unit.star}},
{apply equiv_of_is_contr_of_is_contr}},
{apply is_trunc_is_embedding_closed,
{apply is_embedding_to_fun},
{exact unit.star}}
end
/- theorems about decidable equality and axiom K -/
definition is_hset_of_axiom_K {A : Type} (K : Π{a : A} (p : a = a), p = idp) : is_hset A :=
is_hset.mk _ (λa b p q, eq.rec_on q K p)
theorem is_hset_of_relation.{u} {A : Type.{u}} (R : A → A → Type.{u})
(mere : Π(a b : A), is_hprop (R a b)) (refl : Π(a : A), R a a)
(imp : Π{a b : A}, R a b → a = b) : is_hset A :=
is_hset_of_axiom_K
(λa p,
have H2 : transport (λx, R a x → a = x) p (@imp a a) = @imp a a, from !apd,
have H3 : Π(r : R a a), transport (λx, a = x) p (imp r)
= imp (transport (λx, R a x) p r), from
to_fun (equiv.symm !heq_pi) H2,
have H4 : imp (refl a) ⬝ p = imp (refl a), from
calc
imp (refl a) ⬝ p = transport (λx, a = x) p (imp (refl a)) : transport_eq_r
... = imp (transport (λx, R a x) p (refl a)) : H3
... = imp (refl a) : is_hprop.elim,
cancel_left H4)
definition relation_equiv_eq {A : Type} (R : A → A → Type)
(mere : Π(a b : A), is_hprop (R a b)) (refl : Π(a : A), R a a)
(imp : Π{a b : A}, R a b → a = b) (a b : A) : R a b ≃ a = b :=
@equiv_of_is_hprop _ _ _
(@is_trunc_eq _ _ (is_hset_of_relation R mere refl @imp) a b)
imp
(λp, p ▸ refl a)
local attribute not [reducible]
definition is_hset_of_double_neg_elim {A : Type} (H : Π(a b : A), ¬¬a = b → a = b)
: is_hset A :=
is_hset_of_relation (λa b, ¬¬a = b) _ (λa n, n idp) H
section
open decidable
--this is proven differently in init.hedberg
definition is_hset_of_decidable_eq (A : Type)
[H : decidable_eq A] : is_hset A :=
is_hset_of_double_neg_elim (λa b, by_contradiction)
end
definition is_trunc_of_axiom_K_of_leq {A : Type} (n : trunc_index) (H : -1 ≤ n)
(K : Π(a : A), is_trunc n (a = a)) : is_trunc (n.+1) A :=
@is_trunc_succ_intro _ _ (λa b, is_trunc_of_imp_is_trunc_of_leq H (λp, eq.rec_on p !K))
end is_trunc open is_trunc
namespace trunc
variable {A : Type}
definition trunc_eq_type (n : trunc_index) (aa aa' : trunc n.+1 A) : n-Type :=
trunc.rec_on aa (λa, trunc.rec_on aa' (λa', trunctype.mk' n (trunc n (a = a'))))
definition trunc_eq_equiv (n : trunc_index) (aa aa' : trunc n.+1 A)
: aa = aa' ≃ trunc_eq_type n aa aa' :=
begin
fapply equiv.MK,
{ intro p, cases p, apply (trunc.rec_on aa),
intro a, esimp [trunc_eq_type,trunc.rec_on], exact (tr idp)},
{ eapply (trunc.rec_on aa'), eapply (trunc.rec_on aa),
intro a a' x, esimp [trunc_eq_type, trunc.rec_on] at x,
apply (trunc.rec_on x), intro p, exact (ap tr p)},
{
-- apply (trunc.rec_on aa'), apply (trunc.rec_on aa),
-- intro a a' x, esimp [trunc_eq_type, trunc.rec_on] at x,
-- apply (trunc.rec_on x), intro p,
-- cases p, esimp [trunc.rec_on,eq.cases_on,compose,id], -- apply idp --?
apply sorry},
{ intro p, cases p, apply (trunc.rec_on aa), intro a, apply sorry},
end
definition tr_eq_tr_equiv (n : trunc_index) (a a' : A)
: (tr a = tr a' :> trunc n.+1 A) ≃ trunc n (a = a') :=
!trunc_eq_equiv
definition is_trunc_trunc_of_is_trunc [instance] [priority 500] (A : Type)
(n m : trunc_index) [H : is_trunc n A] : is_trunc n (trunc m A) :=
begin
revert A m H, eapply (trunc_index.rec_on n),
{ clear n, intro A m H, apply is_contr_equiv_closed,
{ apply equiv_trunc, apply (@is_trunc_of_leq _ -2), exact unit.star} },
{ clear n, intro n IH A m H, cases m with m,
{ apply (@is_trunc_of_leq _ -2), exact unit.star},
{ apply is_trunc_succ_intro, intro aa aa',
apply (@trunc.rec_on _ _ _ aa (λy, !is_trunc_succ_of_is_hprop)),
eapply (@trunc.rec_on _ _ _ aa' (λy, !is_trunc_succ_of_is_hprop)),
intro a a', apply (is_trunc_equiv_closed_rev),
{ apply tr_eq_tr_equiv},
{ exact (IH _ _ _)}}}
end
end trunc open trunc
namespace function
variables {A B : Type}
definition is_surjective_of_is_equiv [instance] (f : A → B) [H : is_equiv f] : is_surjective f :=
is_surjective.mk (λb, !center)
definition is_equiv_equiv_is_embedding_times_is_surjective (f : A → B)
: is_equiv f ≃ (is_embedding f × is_surjective f) :=
equiv_of_is_hprop (λH, (_, _))
(λP, prod.rec_on P (λH₁ H₂, !is_equiv_of_is_surjective_of_is_embedding))
end function