lean2/library/data/sigma.lean

74 lines
3.7 KiB
Text

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
import logic.inhabited logic.cast
open inhabited eq.ops
structure sigma {A : Type} (B : A → Type) :=
dpair :: (dpr1 : A) (dpr2 : B dpr1)
notation `Σ` binders `,` r:(scoped P, sigma P) := r
namespace sigma
universe variables u v
variables {A A' : Type.{u}} {B : A → Type.{v}} {B' : A' → Type.{v}}
theorem dpr1_dpair (a : A) (b : B a) : dpr1 (dpair a b) = a := rfl
theorem dpr2_dpair (a : A) (b : B a) : dpr2 (dpair a b) = b := rfl
protected theorem destruct {P : sigma B → Prop} (p : sigma B) (H : ∀a b, P (dpair a b)) : P p :=
rec H p
theorem dpair_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) :
dpair a₁ b₁ = dpair a₂ b₂ :=
dcongr_arg2 dpair H₁ H₂
theorem dpair_heq {a : A} {a' : A'} {b : B a} {b' : B' a'}
(HB : B == B') (Ha : a == a') (Hb : b == b') : dpair a b == dpair a' b' :=
hcongr_arg4 @dpair (heq.type_eq Ha) HB Ha Hb
protected theorem equal {p₁ p₂ : Σa : A, B a} :
∀(H₁ : dpr1 p₁ = dpr1 p₂) (H₂ : eq.rec_on H₁ (dpr2 p₁) = dpr2 p₂), p₁ = p₂ :=
destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, dpair_eq H₁ H₂))
protected theorem hequal {p : Σa : A, B a} {p' : Σa' : A', B' a'} (HB : B == B') :
∀(H₁ : dpr1 p == dpr1 p') (H₂ : dpr2 p == dpr2 p'), p == p' :=
destruct p (take a₁ b₁, destruct p' (take a₂ b₂ H₁ H₂, dpair_heq HB H₁ H₂))
protected definition is_inhabited [instance] (H₁ : inhabited A) (H₂ : inhabited (B (default A))) :
inhabited (sigma B) :=
inhabited.destruct H₁ (λa, inhabited.destruct H₂ (λb, inhabited.mk (dpair (default A) b)))
theorem eq_rec_dpair_commute {C : Πa, B a → Type} {a a' : A} (H : a = a') (b : B a) (c : C a b) :
eq.rec_on H (dpair b c) = dpair (eq.rec_on H b) (eq.rec_on (dcongr_arg2 C H rfl) c) :=
eq.drec_on H (dpair_eq rfl (!eq.rec_on_id⁻¹))
variables {C : Πa, B a → Type} {D : Πa b, C a b → Type}
definition dtrip (a : A) (b : B a) (c : C a b) := dpair a (dpair b c)
definition dquad (a : A) (b : B a) (c : C a b) (d : D a b c) := dpair a (dpair b (dpair c d))
definition dpr1' (x : Σ a, B a) := dpr1 x
definition dpr2' (x : Σ a b, C a b) := dpr1 (dpr2 x)
definition dpr3 (x : Σ a b, C a b) := dpr2 (dpr2 x)
definition dpr3' (x : Σ a b c, D a b c) := dpr1 (dpr2 (dpr2 x))
definition dpr4 (x : Σ a b c, D a b c) := dpr2 (dpr2 (dpr2 x))
theorem dtrip_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂}
(H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) (H₃ : cast (dcongr_arg2 C H₁ H₂) c₁ = c₂) :
dtrip a₁ b₁ c₁ = dtrip a₂ b₂ c₂ :=
dcongr_arg3 dtrip H₁ H₂ H₃
theorem ndtrip_eq {A B : Type} {C : A → B → Type} {a₁ a₂ : A} {b₁ b₂ : B}
{c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (H₁ : a₁ = a₂) (H₂ : b₁ = b₂)
(H₃ : cast (congr_arg2 C H₁ H₂) c₁ = c₂) :
dtrip a₁ b₁ c₁ = dtrip a₂ b₂ c₂ :=
hdcongr_arg3 dtrip H₁ (heq.from_eq H₂) H₃
theorem ndtrip_equal {A B : Type} {C : A → B → Type} {p₁ p₂ : Σa b, C a b} :
∀(H₁ : dpr1 p₁ = dpr1 p₂) (H₂ : dpr2' p₁ = dpr2' p₂)
(H₃ : eq.rec_on (congr_arg2 C H₁ H₂) (dpr3 p₁) = dpr3 p₂), p₁ = p₂ :=
destruct p₁ (take a₁ q₁, destruct q₁ (take b₁ c₁, destruct p₂ (take a₂ q₂, destruct q₂
(take b₂ c₂ H₁ H₂ H₃, ndtrip_eq H₁ H₂ H₃))))
end sigma