lean2/hott/algebra/precategory/iso.hlean

68 lines
2.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Floris van Doorn, Jakob von Raumer
import .basic .morphism types.sigma
open eq precategory sigma sigma.ops equiv is_equiv function is_trunc
open prod
namespace morphism
variables {ob : Type} [C : precategory ob] include C
variables {a b c : ob} {g : b ⟶ c} {f : a ⟶ b} {h : b ⟶ a}
-- "is_iso f" is equivalent to a certain sigma type
protected definition sigma_char (f : hom a b) :
(Σ (g : hom b a), (g ∘ f = id) × (f ∘ g = id)) ≃ is_iso f :=
begin
fapply (equiv.mk),
{intro S, apply is_iso.mk,
exact (pr₁ S.2),
exact (pr₂ S.2)},
{fapply adjointify,
{intro H, cases H with (g, η, ε),
exact (sigma.mk g (pair η ε))},
{intro H, cases H, apply idp},
{intro S, cases S with (g, ηε), cases ηε, apply idp}},
end
-- The structure for isomorphism can be characterized up to equivalence
-- by a sigma type.
definition sigma_is_iso_equiv ⦃a b : ob⦄ : (Σ (f : hom a b), is_iso f) ≃ (a ≅ b) :=
begin
fapply (equiv.mk),
{intro S, apply isomorphic.mk, apply (S.2)},
{fapply adjointify,
{intro p, cases p with (f, H), exact (sigma.mk f H)},
{intro p, cases p, apply idp},
{intro S, cases S, apply idp}},
end
set_option apply.class_instance false -- disable class instance resolution in the apply tactic
-- The statement "f is an isomorphism" is a mere proposition
definition is_hprop_of_is_iso : is_hset (is_iso f) :=
begin
apply is_trunc_is_equiv_closed,
apply (equiv.to_is_equiv (!sigma_char)),
apply is_trunc_sigma,
apply (!homH),
{intro g, apply is_trunc_prod,
repeat (apply is_trunc_eq; apply is_trunc_succ; apply (!homH))},
end
-- The type of isomorphisms between two objects is a set
definition is_hset_iso : is_hset (a ≅ b) :=
begin
apply is_trunc_is_equiv_closed,
apply (equiv.to_is_equiv (!sigma_is_iso_equiv)),
apply is_trunc_sigma,
apply homH,
{intro f, apply is_hprop_of_is_iso},
end
-- In a precategory, equal objects are isomorphic
definition iso_of_path (p : a = b) : isomorphic a b :=
eq.rec_on p (isomorphic.mk id)
end morphism