lean2/hott/algebra/precategory/morphism.hlean

253 lines
11 KiB
Text

-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Floris van Doorn, Jakob von Raumer
import .basic
open eq precategory sigma sigma.ops equiv is_equiv function is_trunc
namespace morphism
variables {ob : Type} [C : precategory ob] include C
variables {a b c : ob} {g : b ⟶ c} {f : a ⟶ b} {h : b ⟶ a}
inductive is_section [class] (f : a ⟶ b) : Type
:= mk : ∀{g}, g ∘ f = id → is_section f
inductive is_retraction [class] (f : a ⟶ b) : Type
:= mk : ∀{g}, f ∘ g = id → is_retraction f
inductive is_iso [class] (f : a ⟶ b) : Type
:= mk : ∀{g}, g ∘ f = id → f ∘ g = id → is_iso f
attribute is_iso [multiple-instances]
definition retraction_of (f : a ⟶ b) [H : is_section f] : hom b a :=
is_section.rec (λg h, g) H
definition section_of (f : a ⟶ b) [H : is_retraction f] : hom b a :=
is_retraction.rec (λg h, g) H
definition inverse (f : a ⟶ b) [H : is_iso f] : hom b a :=
is_iso.rec (λg h1 h2, g) H
postfix `⁻¹` := inverse
theorem inverse_compose (f : a ⟶ b) [H : is_iso f] : f⁻¹ ∘ f = id :=
is_iso.rec (λg h1 h2, h1) H
theorem compose_inverse (f : a ⟶ b) [H : is_iso f] : f ∘ f⁻¹ = id :=
is_iso.rec (λg h1 h2, h2) H
theorem retraction_compose (f : a ⟶ b) [H : is_section f] : retraction_of f ∘ f = id :=
is_section.rec (λg h, h) H
theorem compose_section (f : a ⟶ b) [H : is_retraction f] : f ∘ section_of f = id :=
is_retraction.rec (λg h, h) H
theorem is_section_of_is_iso [instance] (f : a ⟶ b) [H : is_iso f] : is_section f :=
is_section.mk !inverse_compose
theorem is_retraction_of_is_iso [instance] (f : a ⟶ b) [H : is_iso f] : is_retraction f :=
is_retraction.mk !compose_inverse
theorem is_iso_id [instance] : is_iso (ID a) :=
is_iso.mk !id_compose !id_compose
theorem is_iso_inverse [instance] (f : a ⟶ b) [H : is_iso f] : is_iso (f⁻¹) :=
is_iso.mk !compose_inverse !inverse_compose
theorem left_inverse_eq_right_inverse {f : a ⟶ b} {g g' : hom b a}
(Hl : g ∘ f = id) (Hr : f ∘ g' = id) : g = g' :=
by rewrite [-(id_right g), -Hr, assoc, Hl, id_left]
theorem retraction_eq_intro [H : is_section f] (H2 : f ∘ h = id) : retraction_of f = h
:= left_inverse_eq_right_inverse !retraction_compose H2
theorem section_eq_intro [H : is_retraction f] (H2 : h ∘ f = id) : section_of f = h
:= (left_inverse_eq_right_inverse H2 !compose_section)⁻¹
theorem inverse_eq_intro_right [H : is_iso f] (H2 : f ∘ h = id) : f⁻¹ = h
:= left_inverse_eq_right_inverse !inverse_compose H2
theorem inverse_eq_intro_left [H : is_iso f] (H2 : h ∘ f = id) : f⁻¹ = h
:= (left_inverse_eq_right_inverse H2 !compose_inverse)⁻¹
theorem section_of_eq_retraction_of (f : a ⟶ b) [Hl : is_section f] [Hr : is_retraction f] :
retraction_of f = section_of f :=
retraction_eq_intro !compose_section
theorem is_iso_of_is_retraction_of_is_section (f : a ⟶ b) [Hl : is_section f] [Hr : is_retraction f]
: is_iso f :=
is_iso.mk ((section_of_eq_retraction_of f) ▹ (retraction_compose f)) (compose_section f)
theorem inverse_unique (H H' : is_iso f) : @inverse _ _ _ _ f H = @inverse _ _ _ _ f H' :=
inverse_eq_intro_left !inverse_compose
theorem inverse_involutive (f : a ⟶ b) [H : is_iso f] : (f⁻¹)⁻¹ = f :=
inverse_eq_intro_right !inverse_compose
theorem retraction_of_id : retraction_of (ID a) = id :=
retraction_eq_intro !id_compose
theorem section_of_id : section_of (ID a) = id :=
section_eq_intro !id_compose
theorem id_inverse [H : is_iso (ID a)] : (ID a)⁻¹ = id :=
inverse_eq_intro_left !id_compose
theorem is_section_comp [instance] [Hf : is_section f] [Hg : is_section g]
: is_section (g ∘ f) :=
is_section.mk
(show (retraction_of f ∘ retraction_of g) ∘ g ∘ f = id,
by rewrite [-assoc, assoc _ g f, retraction_compose, id_left, retraction_compose])
theorem is_retraction_comp [instance] [Hf : is_retraction f] [Hg : is_retraction g]
: is_retraction (g ∘ f) :=
is_retraction.mk
(show (g ∘ f) ∘ section_of f ∘ section_of g = id,
by rewrite [-assoc, {f ∘ _}assoc, compose_section, id_left, compose_section])
theorem is_inverse_comp [instance] [Hf : is_iso f] [Hg : is_iso g] : is_iso (g ∘ f) :=
!is_iso_of_is_retraction_of_is_section
structure isomorphic (a b : ob) :=
(iso : hom a b)
[is_iso : is_iso iso]
infix `≅`:50 := morphism.isomorphic
attribute isomorphic.is_iso [instance]
namespace isomorphic
definition refl (a : ob) : a ≅ a :=
mk id
definition symm ⦃a b : ob⦄ (H : a ≅ b) : b ≅ a :=
mk (inverse (iso H))
definition trans ⦃a b c : ob⦄ (H1 : a ≅ b) (H2 : b ≅ c) : a ≅ c :=
mk (iso H2 ∘ iso H1)
end isomorphic
inductive is_mono [class] (f : a ⟶ b) : Type :=
mk : (∀c (g h : hom c a), f ∘ g = f ∘ h → g = h) → is_mono f
inductive is_epi [class] (f : a ⟶ b) : Type :=
mk : (∀c (g h : hom b c), g ∘ f = h ∘ f → g = h) → is_epi f
theorem is_mono.elim [H : is_mono f] {g h : c ⟶ a} (H2 : f ∘ g = f ∘ h) : g = h
:= is_mono.rec (λH3, H3 c g h H2) H
theorem is_epi.elim [H : is_epi f] {g h : b ⟶ c} (H2 : g ∘ f = h ∘ f) : g = h
:= is_epi.rec (λH3, H3 c g h H2) H
theorem is_mono_of_is_section [instance] (f : a ⟶ b) [H : is_section f] : is_mono f :=
is_mono.mk
(λ c g h H,
calc
g = id ∘ g : by rewrite id_left
... = (retraction_of f ∘ f) ∘ g : by rewrite -retraction_compose
... = (retraction_of f ∘ f) ∘ h : by rewrite [-assoc, H, -assoc]
... = id ∘ h : by rewrite retraction_compose
... = h : by rewrite id_left)
theorem is_epi_of_is_retraction [instance] (f : a ⟶ b) [H : is_retraction f] : is_epi f :=
is_epi.mk
(λ c g h H,
calc
g = g ∘ id : by rewrite id_right
... = g ∘ f ∘ section_of f : by rewrite -compose_section
... = h ∘ f ∘ section_of f : by rewrite [assoc, H, -assoc]
... = h ∘ id : by rewrite compose_section
... = h : by rewrite id_right)
theorem is_mono_comp [instance] [Hf : is_mono f] [Hg : is_mono g] : is_mono (g ∘ f) :=
is_mono.mk
(λ d h₁ h₂ H,
have H2 : g ∘ (f ∘ h₁) = g ∘ (f ∘ h₂),
begin
rewrite *assoc, exact H
end,
is_mono.elim (is_mono.elim H2))
theorem is_epi_comp [instance] [Hf : is_epi f] [Hg : is_epi g] : is_epi (g ∘ f) :=
is_epi.mk
(λ d h₁ h₂ H,
have H2 : (h₁ ∘ g) ∘ f = (h₂ ∘ g) ∘ f,
begin
rewrite -*assoc, exact H
end,
is_epi.elim (is_epi.elim H2))
end morphism
namespace morphism
--rewrite lemmas for inverses, modified from
--https://github.com/JasonGross/HoTT-categories/blob/master/theories/Categories/Category/Morphisms.v
namespace iso
section
variables {ob : Type} [C : precategory ob] include C
variables {a b c d : ob} (f : b ⟶ a)
(r : c ⟶ d) (q : b ⟶ c) (p : a ⟶ b)
(g : d ⟶ c)
variable [Hq : is_iso q] include Hq
theorem compose_pV : q ∘ q⁻¹ = id := !compose_inverse
theorem compose_Vp : q⁻¹ ∘ q = id := !inverse_compose
theorem compose_V_pp : q⁻¹ ∘ (q ∘ p) = p :=
by rewrite [assoc, inverse_compose, id_left]
theorem compose_p_Vp : q ∘ (q⁻¹ ∘ g) = g :=
by rewrite [assoc, compose_inverse, id_left]
theorem compose_pp_V : (r ∘ q) ∘ q⁻¹ = r :=
by rewrite [-assoc, compose_inverse, id_right]
theorem compose_pV_p : (f ∘ q⁻¹) ∘ q = f :=
by rewrite [-assoc, inverse_compose, id_right]
theorem con_inv [H' : is_iso p] [Hpq : is_iso (q ∘ p)] : (q ∘ p)⁻¹ = p⁻¹ ∘ q⁻¹ :=
inverse_eq_intro_left
(show (p⁻¹ ∘ (q⁻¹)) ∘ q ∘ p = id, from
by rewrite [-assoc, compose_V_pp, inverse_compose])
--the proof using calc is hard for the unifier (needs ~90k steps)
-- inverse_eq_intro_left
-- (calc
-- (p⁻¹ ∘ (q⁻¹)) ∘ q ∘ p = p⁻¹ ∘ (q⁻¹ ∘ (q ∘ p)) : assoc (p⁻¹) (q⁻¹) (q ∘ p)⁻¹
-- ... = (p⁻¹) ∘ p : congr_arg (λx, p⁻¹ ∘ x) (compose_V_pp q p)
-- ... = id : inverse_compose p)
theorem inv_con_inv_left [H' : is_iso g] : (q⁻¹ ∘ g)⁻¹ = g⁻¹ ∘ q :=
inverse_involutive q ▹ con_inv (q⁻¹) g
theorem inv_con_inv_right [H' : is_iso f] : (q ∘ f⁻¹)⁻¹ = f ∘ q⁻¹ :=
inverse_involutive f ▹ con_inv q (f⁻¹)
theorem inv_con_inv_inv [H' : is_iso r] : (q⁻¹ ∘ r⁻¹)⁻¹ = r ∘ q :=
inverse_involutive r ▹ inv_con_inv_left q (r⁻¹)
end
section
variables {ob : Type} {C : precategory ob} include C
variables {d c b a : ob}
{i : b ⟶ c} {f : b ⟶ a}
{r : c ⟶ d} {q : b ⟶ c} {p : a ⟶ b}
{g : d ⟶ c} {h : c ⟶ b}
{x : b ⟶ d} {z : a ⟶ c}
{y : d ⟶ b} {w : c ⟶ a}
variable [Hq : is_iso q] include Hq
theorem con_eq_of_eq_inv_con (H : y = q⁻¹ ∘ g) : q ∘ y = g := H⁻¹ ▹ compose_p_Vp q g
theorem con_eq_of_eq_con_inv (H : w = f ∘ q⁻¹) : w ∘ q = f := H⁻¹ ▹ compose_pV_p f q
theorem inv_con_eq_of_eq_con (H : z = q ∘ p) : q⁻¹ ∘ z = p := H⁻¹ ▹ compose_V_pp q p
theorem con_inv_eq_of_eq_con (H : x = r ∘ q) : x ∘ q⁻¹ = r := H⁻¹ ▹ compose_pp_V r q
theorem eq_con_of_inv_con_eq (H : q⁻¹ ∘ g = y) : g = q ∘ y := con_eq_of_eq_inv_con (H⁻¹)⁻¹
theorem eq_con_of_con_inv_eq (H : f ∘ q⁻¹ = w) : f = w ∘ q := con_eq_of_eq_con_inv (H⁻¹)⁻¹
theorem eq_inv_con_of_con_eq (H : q ∘ p = z) : p = q⁻¹ ∘ z := inv_con_eq_of_eq_con (H⁻¹)⁻¹
theorem eq_con_inv_of_con_eq (H : r ∘ q = x) : r = x ∘ q⁻¹ := con_inv_eq_of_eq_con (H⁻¹)⁻¹
theorem eq_inv_of_con_eq_idp' (H : h ∘ q = id) : h = q⁻¹ := inverse_eq_intro_left H⁻¹
theorem eq_inv_of_con_eq_idp (H : q ∘ h = id) : h = q⁻¹ := inverse_eq_intro_right H⁻¹
theorem eq_of_con_inv_eq_idp (H : i ∘ q⁻¹ = id) : i = q := eq_inv_of_con_eq_idp' H ⬝ inverse_involutive q
theorem eq_of_inv_con_eq_idp (H : q⁻¹ ∘ i = id) : i = q := eq_inv_of_con_eq_idp H ⬝ inverse_involutive q
theorem eq_of_idp_eq_con_inv (H : id = i ∘ q⁻¹) : q = i := eq_of_con_inv_eq_idp (H⁻¹)⁻¹
theorem eq_of_idp_eq_inv_con (H : id = q⁻¹ ∘ i) : q = i := eq_of_inv_con_eq_idp (H⁻¹)⁻¹
theorem inv_eq_of_idp_eq_con (H : id = h ∘ q) : q⁻¹ = h := eq_inv_of_con_eq_idp' (H⁻¹)⁻¹
theorem inv_eq_of_idp_eq_con' (H : id = q ∘ h) : q⁻¹ = h := eq_inv_of_con_eq_idp (H⁻¹)⁻¹
end
end iso
end morphism