lean2/library/data/real/division.lean

679 lines
22 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Robert Y. Lewis
The real numbers, constructed as equivalence classes of Cauchy sequences of rationals.
This construction follows Bishop and Bridges (1985).
At this point, we no longer proceed constructively: this file makes heavy use of decidability
and excluded middle.
-/
import data.real.basic data.real.order data.rat data.nat logic.axioms.classical
open -[coercions] rat
open -[coercions] nat
local notation 0 := rat.of_num 0
local notation 1 := rat.of_num 1
open eq.ops
local notation 2 := pnat.pos (nat.of_num 2) dec_trivial
namespace s
-----------------------------
-- helper lemmas
theorem abs_sub_square (a b : ) : abs (a - b) * abs (a - b) = a * a + b * b - (1 + 1) * a * b :=
sorry --begin rewrite [abs_mul_self, *rat.left_distrib, *rat.right_distrib, *one_mul] end
theorem neg_add_rewrite {a b : } : a + -b = -(b + -a) := sorry
theorem abs_abs_sub_abs_le_abs_sub (a b : ) : abs (abs a - abs b) ≤ abs (a - b) :=
begin
apply rat.nonneg_le_nonneg_of_squares_le,
repeat apply abs_nonneg,
rewrite [*(abs_sub_square _ _), *abs_abs, *abs_mul_self],
apply sub_le_sub_left,
rewrite *rat.mul.assoc,
apply rat.mul_le_mul_of_nonneg_left,
rewrite -abs_mul,
apply le_abs_self,
apply trivial
end
theorem abs_one_div (q : ) : abs (1 / q) = 1 / abs q := sorry
theorem div_le_pnat (q : ) (n : +) (H : q ≥ n⁻¹) : 1 / q ≤ pnat.to_rat n := sorry
theorem pnat_cancel' (n m : +) : (n * n * m)⁻¹ * (pnat.to_rat n * pnat.to_rat n) = m⁻¹ := sorry
-- does this not exist already??
theorem forall_of_not_exists {A : Type} {P : A → Prop} (H : ¬ ∃ a : A, P a) : ∀ a : A, ¬ P a :=
take a, assume Ha, H (exists.intro a Ha)
theorem and_of_not_or {a b : Prop} (H : ¬ (a b)) : ¬ a ∧ ¬ b :=
and.intro (assume H', H (or.inl H')) (assume H', H (or.inr H'))
theorem ne_zero_of_abs_ne_zero {a : } (H : abs a ≠ 0) : a ≠ 0 :=
assume Ha, H (Ha⁻¹ ▸ abs_zero)
-----------------------------
-- Facts about absolute values of sequences, to define inverse
definition s_abs (s : seq) : seq := λ n, abs (s n)
theorem abs_reg_of_reg {s : seq} (Hs : regular s) : regular (s_abs s) :=
begin
rewrite ↑regular at *,
intros,
apply rat.le.trans,
apply abs_abs_sub_abs_le_abs_sub,
apply Hs
end
theorem abs_pos_of_nonzero {s : seq} (Hs : regular s) (Hnz : sep s zero) :
∃ N : +, ∀ m : +, m ≥ N → abs (s m) ≥ N⁻¹ :=
begin
rewrite [↑sep at Hnz, ↑s_lt at Hnz],
apply or.elim Hnz,
intro Hnz1,
have H' : pos (sneg s), begin
apply pos_of_pos_equiv,
rotate 2,
apply Hnz1,
rotate 1,
apply s_zero_add,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg | apply zero_is_reg)
end,
let H'' := bdd_away_of_pos (reg_neg_reg Hs) H',
apply exists.elim H'',
intro N HN,
existsi N,
intro m Hm,
apply rat.le.trans,
apply HN m Hm,
rewrite ↑sneg,
apply neg_le_abs_self,
intro Hnz2,
let H' := pos_of_pos_equiv (reg_add_reg Hs (reg_neg_reg zero_is_reg)) (s_add_zero s Hs) Hnz2,
let H'' := bdd_away_of_pos Hs H',
apply exists.elim H'',
intro N HN,
existsi N,
intro m Hm,
apply rat.le.trans,
apply HN m Hm,
apply le_abs_self
end
theorem sep_zero_of_pos {s : seq} (Hs : regular s) (Hpos : pos s) : sep s zero :=
begin
rewrite ↑sep,
apply or.inr,
rewrite ↑s_lt,
apply pos_of_pos_equiv,
rotate 2,
apply Hpos,
apply Hs,
apply equiv.symm,
apply s_sub_zero Hs
end
------------------------
-- This section could be cleaned up.
definition pb {s : seq} (Hs : regular s) (Hpos : pos s) :=
some (abs_pos_of_nonzero Hs (sep_zero_of_pos Hs Hpos))
definition ps {s : seq} (Hs : regular s) (Hsep : sep s zero) :=
some (abs_pos_of_nonzero Hs Hsep)
theorem pb_spec {s : seq} (Hs : regular s) (Hpos : pos s) :
∀ m : +, m ≥ (pb Hs Hpos) → abs (s m) ≥ (pb Hs Hpos)⁻¹ :=
some_spec (abs_pos_of_nonzero Hs (sep_zero_of_pos Hs Hpos))
theorem ps_spec {s : seq} (Hs : regular s) (Hsep : sep s zero) :
∀ m : +, m ≥ (ps Hs Hsep) → abs (s m) ≥ (ps Hs Hsep)⁻¹ :=
some_spec (abs_pos_of_nonzero Hs Hsep)
definition s_inv {s : seq} (Hs : regular s) (n : +) : :=
if H : sep s zero then
(if n < (ps Hs H) then 1 / (s ((ps Hs H) * (ps Hs H) * (ps Hs H)))
else 1 / (s ((ps Hs H) * (ps Hs H) * n)))
else 0
theorem peq {s : seq} (Hsep : sep s zero) (Hpos : pos s) (Hs : regular s) :
pb Hs Hpos = ps Hs Hsep := rfl
theorem s_inv_of_sep_lt_p {s : seq} (Hs : regular s) (Hsep : sep s zero) {n : +}
(Hn : n < (ps Hs Hsep)) : s_inv Hs n = 1 / s ((ps Hs Hsep) * (ps Hs Hsep) * (ps Hs Hsep)) :=
begin
apply eq.trans,
apply dif_pos Hsep,
apply dif_pos Hn
end
theorem s_inv_of_sep_gt_p {s : seq} (Hs : regular s) (Hsep : sep s zero) {n : +}
(Hn : n ≥ (ps Hs Hsep)) : s_inv Hs n = 1 / s ((ps Hs Hsep) * (ps Hs Hsep) * n) :=
begin
apply eq.trans,
apply dif_pos Hsep,
apply dif_neg (pnat.not_lt_of_le Hn)
end
theorem s_inv_of_pos_lt_p {s : seq} (Hs : regular s) (Hpos : pos s) {n : +}
(Hn : n < (pb Hs Hpos)) : s_inv Hs n = 1 / s ((pb Hs Hpos) * (pb Hs Hpos) * (pb Hs Hpos)) :=
s_inv_of_sep_lt_p Hs (sep_zero_of_pos Hs Hpos) Hn
theorem s_inv_of_pos_gt_p {s : seq} (Hs : regular s) (Hpos : pos s) {n : +}
(Hn : n ≥ (pb Hs Hpos)) : s_inv Hs n = 1 / s ((pb Hs Hpos) * (pb Hs Hpos) * n) :=
s_inv_of_sep_gt_p Hs (sep_zero_of_pos Hs Hpos) Hn
theorem le_ps {s : seq} (Hs : regular s) (Hsep : sep s zero) (n : +) :
abs (s_inv Hs n) ≤ (pnat.to_rat (ps Hs Hsep)) :=
if Hn : n < ps Hs Hsep then
(begin
rewrite [(s_inv_of_sep_lt_p Hs Hsep Hn), abs_one_div],
apply div_le_pnat,
apply ps_spec,
apply pnat.mul_le_mul_left
end)
else
(begin
rewrite [(s_inv_of_sep_gt_p Hs Hsep (le_of_not_gt Hn)), abs_one_div],
apply div_le_pnat,
apply ps_spec,
rewrite pnat_mul_assoc,
apply pnat.mul_le_mul_right
end)
theorem s_inv_zero : s_inv zero_is_reg = zero :=
funext (λ n, dif_neg (!not_sep_self))
theorem s_inv_of_zero' {s : seq} (Hs : regular s) (Hz : ¬ sep s zero) (n : +) : s_inv Hs n = 0 :=
dif_neg Hz
theorem s_inv_of_zero {s : seq} (Hs : regular s) (Hz : ¬ sep s zero) : s_inv Hs = zero :=
begin
apply funext,
intro n,
apply s_inv_of_zero' Hs Hz n
end
theorem s_ne_zero_of_ge_p {s : seq} (Hs : regular s) (Hsep : sep s zero) {n : +}
(Hn : n ≥ (ps Hs Hsep)) : s n ≠ 0 :=
begin
let Hps := ps_spec Hs Hsep,
apply ne_zero_of_abs_ne_zero,
apply ne_of_gt,
apply gt_of_ge_of_gt,
apply Hps,
apply Hn,
apply inv_pos
end
theorem reg_inv_reg {s : seq} (Hs : regular s) (Hsep : sep s zero) : regular (s_inv Hs) :=
begin
rewrite ↑regular,
intros,
have Hsp : s ((ps Hs Hsep) * (ps Hs Hsep) * (ps Hs Hsep)) ≠ 0, from
s_ne_zero_of_ge_p Hs Hsep !pnat.mul_le_mul_left,
have Hspn : s ((ps Hs Hsep) * (ps Hs Hsep) * n) ≠ 0, from
s_ne_zero_of_ge_p Hs Hsep (show (ps Hs Hsep) * (ps Hs Hsep) * n ≥ ps Hs Hsep, by
rewrite pnat_mul_assoc; apply pnat.mul_le_mul_right),
have Hspm : s ((ps Hs Hsep) * (ps Hs Hsep) * m) ≠ 0, from
s_ne_zero_of_ge_p Hs Hsep (show (ps Hs Hsep) * (ps Hs Hsep) * m ≥ ps Hs Hsep, by
rewrite pnat_mul_assoc; apply pnat.mul_le_mul_right),
apply @decidable.cases_on (m < (ps Hs Hsep)) _ _,
intro Hmlt,
apply @decidable.cases_on (n < (ps Hs Hsep)) _ _,
intro Hnlt,
rewrite [(s_inv_of_sep_lt_p Hs Hsep Hmlt), (s_inv_of_sep_lt_p Hs Hsep Hnlt)],
rewrite [sub_self, abs_zero],
apply add_invs_nonneg,
intro Hnlt,
rewrite [(s_inv_of_sep_lt_p Hs Hsep Hmlt),
(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_lt Hnlt))],
rewrite [(div_sub_div Hsp Hspn), div_eq_mul_one_div, *abs_mul, *mul_one, *one_mul],
apply rat.le.trans,
apply rat.mul_le_mul,
apply Hs,
xrewrite [-(mul_one 1), -(div_mul_div Hsp Hspn), abs_mul],
apply rat.mul_le_mul,
rewrite -(s_inv_of_sep_lt_p Hs Hsep Hmlt),
apply le_ps Hs Hsep,
rewrite -(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_lt Hnlt)),
apply le_ps Hs Hsep,
apply abs_nonneg,
apply le_of_lt !rat_of_pnat_is_pos,
apply abs_nonneg,
apply add_invs_nonneg,
rewrite [right_distrib, *pnat_cancel', rat.add.comm],
apply rat.add_le_add_right,
apply inv_ge_of_le,
apply pnat.le_of_lt,
apply Hmlt,
intro Hmlt,
apply @decidable.cases_on (n < (ps Hs Hsep)) _ _,
intro Hnlt,
rewrite [(s_inv_of_sep_lt_p Hs Hsep Hnlt),
(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_lt Hmlt))],
rewrite [(div_sub_div Hspm Hsp), div_eq_mul_one_div, *abs_mul, *mul_one, *one_mul],
apply rat.le.trans,
apply rat.mul_le_mul,
apply Hs,
xrewrite [-(mul_one 1), -(div_mul_div Hspm Hsp), abs_mul],
apply rat.mul_le_mul,
rewrite -(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_lt Hmlt)),
apply le_ps Hs Hsep,
rewrite -(s_inv_of_sep_lt_p Hs Hsep Hnlt),
apply le_ps Hs Hsep,
apply abs_nonneg,
apply le_of_lt !rat_of_pnat_is_pos,
apply abs_nonneg,
apply add_invs_nonneg,
rewrite [right_distrib, *pnat_cancel', rat.add.comm],
apply rat.add_le_add_left,
apply inv_ge_of_le,
apply pnat.le_of_lt,
apply Hnlt,
intro Hnlt,
rewrite [(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_lt Hnlt)),
(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_lt Hmlt))],
rewrite [(div_sub_div Hspm Hspn), div_eq_mul_one_div, abs_mul, *one_mul, *mul_one],
apply rat.le.trans,
apply rat.mul_le_mul,
apply Hs,
xrewrite [-(mul_one 1), -(div_mul_div Hspm Hspn), abs_mul],
apply rat.mul_le_mul,
rewrite -(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_lt Hmlt)),
apply le_ps Hs Hsep,
rewrite -(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_lt Hnlt)),
apply le_ps Hs Hsep,
apply abs_nonneg,
apply le_of_lt !rat_of_pnat_is_pos,
apply abs_nonneg,
apply add_invs_nonneg,
rewrite [right_distrib, *pnat_cancel', rat.add.comm],
apply rat.le.refl
end
theorem s_inv_ne_zero {s : seq} (Hs : regular s) (Hsep : sep s zero) (n : +) : s_inv Hs n ≠ 0 :=
if H : n ≥ ps Hs Hsep then
(begin
rewrite (s_inv_of_sep_gt_p Hs Hsep H),
apply one_div_ne_zero,
apply s_ne_zero_of_ge_p,
apply ple.trans,
apply H,
apply pnat.mul_le_mul_left
end)
else
(begin
rewrite (s_inv_of_sep_lt_p Hs Hsep (lt_of_not_ge H)),
apply one_div_ne_zero,
apply s_ne_zero_of_ge_p,
apply pnat.mul_le_mul_left
end)
theorem mul_inv {s : seq} (Hs : regular s) (Hsep : sep s zero) : smul s (s_inv Hs) ≡ one :=
begin
let Rsi := reg_inv_reg Hs Hsep,
let Rssi := reg_mul_reg Hs Rsi,
apply eq_of_bdd Rssi one_is_reg,
intros,
existsi max (ps Hs Hsep) j,
intro n Hn,
have Hnz : s_inv Hs ((K₂ s (s_inv Hs)) * 2 * n) ≠ 0, from s_inv_ne_zero Hs Hsep _,
xrewrite [↑smul, ↑one, rat.mul.comm, -(mul_one_div_cancel Hnz),
-rat.mul_sub_left_distrib, abs_mul],
apply rat.le.trans,
apply rat.mul_le_mul_of_nonneg_right,
apply canon_2_bound_right s,
apply Rsi,
apply abs_nonneg,
have Hp : (K₂ s (s_inv Hs)) * 2 * n ≥ ps Hs Hsep, begin
apply ple.trans,
apply max_left,
rotate 1,
apply ple.trans,
apply Hn,
apply pnat.mul_le_mul_left
end,
have Hnz' : s (((ps Hs Hsep) * (ps Hs Hsep)) * ((K₂ s (s_inv Hs)) * 2 * n)) ≠ 0, from
s_ne_zero_of_ge_p Hs Hsep
(show ps Hs Hsep ≤ ((ps Hs Hsep) * (ps Hs Hsep)) * ((K₂ s (s_inv Hs)) * 2 * n),
by rewrite *pnat_mul_assoc; apply pnat.mul_le_mul_right),
xrewrite [(s_inv_of_sep_gt_p Hs Hsep Hp), (div_div Hnz')],
apply rat.le.trans,
apply rat.mul_le_mul_of_nonneg_left,
apply Hs,
apply le_of_lt,
apply rat_of_pnat_is_pos,
xrewrite [rat.mul.left_distrib, pnat_mul_comm ((ps Hs Hsep) * (ps Hs Hsep)), *pnat_mul_assoc,
*(@pnat_div_helper (K₂ s (s_inv Hs))), -*rat.mul.assoc, *pnat.inv_cancel,
*one_mul, -(padd_halves j)],
apply rat.add_le_add,
apply inv_ge_of_le,
apply pnat_mul_le_mul_left',
apply ple.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply max_right,
apply inv_ge_of_le,
apply pnat_mul_le_mul_left',
apply ple.trans,
apply max_right,
rotate 1,
apply ple.trans,
apply Hn,
apply pnat.mul_le_mul_right
end
theorem inv_mul {s : seq} (Hs : regular s) (Hsep : sep s zero) : smul (s_inv Hs) s ≡ one :=
begin
apply equiv.trans,
rotate 3,
apply s_mul_comm,
apply mul_inv,
repeat (assumption | apply reg_mul_reg | apply reg_inv_reg | apply zero_is_reg)
end
theorem sep_of_equiv_sep {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t)
(Hsep : sep s zero) : sep t zero :=
begin
apply or.elim Hsep,
intro Hslt,
apply or.inl,
rewrite ↑s_lt at *,
apply pos_of_pos_equiv,
rotate 2,
apply Hslt,
rotate_right 1,
apply add_well_defined,
rotate 4,
apply equiv.refl,
apply neg_well_defined,
apply Heq,
intro Hslt,
apply or.inr,
rewrite ↑s_lt at *,
apply pos_of_pos_equiv,
rotate 2,
apply Hslt,
rotate_right 1,
apply add_well_defined,
rotate 5,
apply equiv.refl,
repeat (assumption | apply reg_neg_reg | apply reg_add_reg | apply zero_is_reg)
end
theorem inv_unique {s t : seq} (Hs : regular s) (Ht : regular t) (Hsep : sep s zero)
(Heq : smul s t ≡ one) : s_inv Hs ≡ t :=
begin
apply equiv.trans,
rotate 3,
apply equiv.symm,
apply s_mul_one,
rotate 1,
apply equiv.trans,
rotate 3,
apply mul_well_defined,
rotate 4,
apply equiv.refl,
apply equiv.symm,
apply Heq,
apply equiv.trans,
rotate 3,
apply equiv.symm,
apply s_mul_assoc,
rotate 3,
apply equiv.trans,
rotate 3,
apply mul_well_defined,
rotate 4,
apply inv_mul,
rotate 1,
apply equiv.refl,
apply s_one_mul,
repeat (assumption | apply reg_inv_reg | apply reg_mul_reg | apply one_is_reg)
end
theorem inv_well_defined {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) :
s_inv Hs ≡ s_inv Ht :=
if Hsep : sep s zero then
(begin
let Hsept := sep_of_equiv_sep Hs Ht Heq Hsep,
have Hm : smul t (s_inv Hs) ≡ smul s (s_inv Hs), begin
apply mul_well_defined,
repeat (assumption | apply reg_inv_reg),
apply equiv.symm s t Heq,
apply equiv.refl
end,
apply equiv.symm,
apply inv_unique,
rotate 2,
apply equiv.trans,
rotate 3,
apply Hm,
apply mul_inv,
repeat (assumption | apply reg_inv_reg | apply reg_mul_reg),
apply one_is_reg
end)
else
(have H : s_inv Hs = zero, from funext (λ n, dif_neg Hsep),
have Hsept : ¬ sep t zero, from
assume H', Hsep (sep_of_equiv_sep Ht Hs (equiv.symm _ _ Heq) H'),
have H' : s_inv Ht = zero, from funext (λ n, dif_neg Hsept),
H'⁻¹ ▸ (H⁻¹ ▸ equiv.refl zero))
theorem s_neg_neg {s : seq} : sneg (sneg s) ≡ s :=
begin
rewrite [↑equiv, ↑sneg],
intro n,
rewrite [neg_neg, sub_self, abs_zero],
apply add_invs_nonneg
end
theorem s_neg_sub {s t : seq} (Hs : regular s) (Ht : regular t) :
sneg (sadd s (sneg t)) ≡ sadd t (sneg s) :=
begin
apply equiv.trans,
rotate 3,
apply s_neg_add_eq_s_add_neg,
apply equiv.trans,
rotate 3,
apply add_well_defined,
rotate 4,
apply equiv.refl,
apply s_neg_neg,
apply s_add_comm,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg)
end
theorem s_le_total {s t : seq} (Hs : regular s) (Ht : regular t) : s_le s t s_le t s :=
if H : s_le s t then or.inl H else or.inr begin
rewrite [↑s_le at *],
have H' : ∃ n : +, -n⁻¹ > sadd t (sneg s) n, begin
apply by_contradiction,
intro Hex,
have Hex' : ∀ n : +, -n⁻¹ ≤ sadd t (sneg s) n, begin
intro m,
apply by_contradiction,
intro Hm,
let Hm' := rat.lt_of_not_ge Hm,
let Hex'' := exists.intro m Hm',
apply Hex Hex''
end,
apply H Hex'
end,
eapply exists.elim H',
intro m Hm,
let Hm' := neg_lt_neg Hm,
rewrite neg_neg at Hm',
apply s_nonneg_of_pos,
rotate 1,
apply pos_of_pos_equiv,
rotate 1,
apply s_neg_sub,
rotate 2,
rewrite [↑pos, ↑sneg],
existsi m,
apply Hm',
repeat (assumption | apply reg_add_reg | apply reg_neg_reg)
end
theorem s_le_of_not_lt {s t : seq} (Hle : ¬ s_lt s t) : s_le t s :=
begin
rewrite [↑s_le, ↑nonneg, ↑s_lt at Hle, ↑pos at Hle],
let Hle' := forall_of_not_exists Hle,
intro n,
let Hn := neg_le_neg (rat.le_of_not_gt (Hle' n)),
rewrite [↑sadd, ↑sneg, neg_add_rewrite],
apply Hn
end
theorem sep_of_nequiv {s t : seq} (Hs : regular s) (Ht : regular t) (Hneq : ¬ equiv s t) :
sep s t :=
begin
rewrite ↑sep,
apply by_contradiction,
intro Hnor,
let Hand := and_of_not_or Hnor,
let Hle1 := s_le_of_not_lt (and.left Hand),
let Hle2 := s_le_of_not_lt (and.right Hand),
apply Hneq (equiv_of_le_of_ge Hs Ht Hle2 Hle1)
end
theorem s_zero_inv_equiv_zero : s_inv zero_is_reg ≡ zero :=
by rewrite s_inv_zero; apply equiv.refl
theorem lt_or_equiv_of_le {s t : seq} (Hs : regular s) (Ht : regular t) (Hle : s_le s t) :
s_lt s t s ≡ t :=
if H : s ≡ t then or.inr H else
or.inl (lt_of_le_and_sep Hs Ht (and.intro Hle (sep_of_nequiv Hs Ht H)))
theorem s_le_of_equiv_le_left {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Heq : s ≡ t) (Hle : s_le s u) : s_le t u :=
begin
rewrite ↑s_le at *,
apply nonneg_of_nonneg_equiv,
rotate 2,
apply add_well_defined,
rotate 4,
apply equiv.refl,
apply neg_well_defined,
apply Heq,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg)
end
theorem s_le_of_equiv_le_right {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Heq : t ≡ u) (Hle : s_le s t) : s_le s u :=
begin
rewrite ↑s_le at *,
apply nonneg_of_nonneg_equiv,
rotate 2,
apply add_well_defined,
rotate 4,
apply Heq,
apply equiv.refl,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg)
end
-----------------------------
definition r_inv (s : reg_seq) : reg_seq := reg_seq.mk (s_inv (reg_seq.is_reg s))
(if H : sep (reg_seq.sq s) zero then reg_inv_reg (reg_seq.is_reg s) H else
have Hz : s_inv (reg_seq.is_reg s) = zero, from funext (λ n, dif_neg H), Hz⁻¹ ▸ zero_is_reg)
theorem r_inv_zero : requiv (r_inv r_zero) r_zero :=
s_zero_inv_equiv_zero
theorem r_inv_well_defined {s t : reg_seq} (H : requiv s t) : requiv (r_inv s) (r_inv t) :=
inv_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) H
theorem r_le_total (s t : reg_seq) : r_le s t r_le t s :=
s_le_total (reg_seq.is_reg s) (reg_seq.is_reg t)
theorem r_mul_inv (s : reg_seq) (Hsep : r_sep s r_zero) : requiv (s * (r_inv s)) r_one :=
mul_inv (reg_seq.is_reg s) Hsep
theorem r_sep_of_nequiv (s t : reg_seq) (Hneq : ¬ requiv s t) : r_sep s t :=
sep_of_nequiv (reg_seq.is_reg s) (reg_seq.is_reg t) Hneq
theorem r_lt_or_equiv_of_le (s t : reg_seq) (Hle : r_le s t) : r_lt s t requiv s t :=
lt_or_equiv_of_le (reg_seq.is_reg s) (reg_seq.is_reg t) Hle
theorem r_le_of_equiv_le_left {s t u : reg_seq} (Heq : requiv s t) (Hle : r_le s u) : r_le t u :=
s_le_of_equiv_le_left (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Heq Hle
theorem r_le_of_equiv_le_right {s t u : reg_seq} (Heq : requiv t u) (Hle : r_le s t) : r_le s u :=
s_le_of_equiv_le_right (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Heq Hle
end s
namespace real
definition inv (x : ) : := quot.lift_on x (λ a, quot.mk (s.r_inv a))
(λ a b H, quot.sound (s.r_inv_well_defined H))
postfix `⁻¹` := inv
theorem le_total (x y : ) : x ≤ y y ≤ x :=
quot.induction_on₂ x y (λ s t, s.r_le_total s t)
theorem mul_inv' (x : ) : x ≢ zero → x * x⁻¹ = one :=
quot.induction_on x (λ s H, quot.sound (s.r_mul_inv s H))
theorem inv_mul' (x : ) : x ≢ zero → x⁻¹ * x = one :=
by rewrite real.mul_comm; apply mul_inv'
theorem neq_of_sep {x y : } (H : x ≢ y) : ¬ x = y :=
assume Heq, !not_sep_self (Heq ▸ H)
theorem sep_of_neq {x y : } : ¬ x = y → x ≢ y :=
quot.induction_on₂ x y (λ s t H, s.r_sep_of_nequiv s t (assume Heq, H (quot.sound Heq)))
theorem sep_is_neq (x y : ) : (x ≢ y) = (¬ x = y) :=
propext (iff.intro neq_of_sep sep_of_neq)
theorem mul_inv (x : ) : x ≠ zero → x * x⁻¹ = one := !sep_is_neq ▸ !mul_inv'
theorem inv_mul (x : ) : x ≠ zero → x⁻¹ * x = one := !sep_is_neq ▸ !inv_mul'
theorem inv_zero : zero⁻¹ = zero := quot.sound (s.r_inv_zero)
theorem lt_or_eq_of_le (x y : ) : x ≤ y → x < y x = y :=
quot.induction_on₂ x y (λ s t H, or.elim (s.r_lt_or_equiv_of_le s t H)
(assume H1, or.inl H1)
(assume H2, or.inr (quot.sound H2)))
theorem le_iff_lt_or_eq (x y : ) : x ≤ y ↔ x < y x = y :=
iff.intro (lt_or_eq_of_le x y) (le_of_lt_or_eq x y)
theorem dec_lt : decidable_rel lt :=
begin
rewrite ↑decidable_rel,
intros,
apply prop_decidable
end
open [classes] algebra
definition linear_ordered_field [instance] : algebra.discrete_linear_ordered_field :=
⦃ algebra.discrete_linear_ordered_field, comm_ring, ordered_ring,
le_total := le_total,
mul_inv_cancel := mul_inv,
inv_mul_cancel := inv_mul,
zero_lt_one := zero_lt_one,
inv_zero := inv_zero,
le_iff_lt_or_eq := le_iff_lt_or_eq,
decidable_lt := dec_lt
end real