92af727daf
These changes were needed because e.g. real.add_zero was "x + zero = x", and rewrite would not match it to a goal "t + 0". The fix was a lot harder than I expected. At first, migrate failed with resource errors. In the end, what worked was this: I defined the coercion from num to real directly (rather than infer num -> nat -> int -> rat -> real). I still don't understand what the issues are, though. There are subtle issues with numerals and coercions and migrate. (We are not alone. Isabelle also suffers from the fact that there are too many "zero"s and "one"s.)
568 lines
22 KiB
Text
568 lines
22 KiB
Text
/-
|
||
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Jeremy Avigad
|
||
|
||
The rational numbers as a field generated by the integers, defined as the usual quotient.
|
||
-/
|
||
import data.int algebra.field
|
||
open int quot eq.ops
|
||
|
||
record prerat : Type :=
|
||
(num : ℤ) (denom : ℤ) (denom_pos : denom > 0)
|
||
|
||
/-
|
||
prerat: the representations of the rationals as integers num, denom, with denom > 0.
|
||
note: names are not protected, because it is not expected that users will open prerat.
|
||
-/
|
||
|
||
namespace prerat
|
||
|
||
/- the equivalence relation -/
|
||
|
||
definition equiv (a b : prerat) : Prop := num a * denom b = num b * denom a
|
||
|
||
infix `≡` := equiv
|
||
|
||
theorem equiv.refl [refl] (a : prerat) : a ≡ a := rfl
|
||
|
||
theorem equiv.symm [symm] {a b : prerat} (H : a ≡ b) : b ≡ a := !eq.symm H
|
||
|
||
theorem num_eq_zero_of_equiv {a b : prerat} (H : a ≡ b) (na_zero : num a = 0) : num b = 0 :=
|
||
have num a * denom b = 0, from !zero_mul ▸ na_zero ▸ rfl,
|
||
have num b * denom a = 0, from H ▸ this,
|
||
show num b = 0, from or_resolve_left (eq_zero_or_eq_zero_of_mul_eq_zero this) (ne_of_gt (denom_pos a))
|
||
|
||
theorem num_pos_of_equiv {a b : prerat} (H : a ≡ b) (na_pos : num a > 0) : num b > 0 :=
|
||
have num a * denom b > 0, from mul_pos na_pos (denom_pos b),
|
||
have num b * denom a > 0, from H ▸ this,
|
||
show num b > 0, from pos_of_mul_pos_right this (le_of_lt (denom_pos a))
|
||
|
||
theorem num_neg_of_equiv {a b : prerat} (H : a ≡ b) (na_neg : num a < 0) : num b < 0 :=
|
||
have num a * denom b < 0, from mul_neg_of_neg_of_pos na_neg (denom_pos b),
|
||
have -(-num b * denom a) < 0, from !neg_mul_eq_neg_mul⁻¹ ▸ !neg_neg⁻¹ ▸ H ▸ this,
|
||
have -num b > 0, from pos_of_mul_pos_right (pos_of_neg_neg this) (le_of_lt (denom_pos a)),
|
||
neg_of_neg_pos this
|
||
|
||
theorem equiv_of_num_eq_zero {a b : prerat} (H1 : num a = 0) (H2 : num b = 0) : a ≡ b :=
|
||
by rewrite [↑equiv, H1, H2, *zero_mul]
|
||
|
||
theorem equiv.trans [trans] {a b c : prerat} (H1 : a ≡ b) (H2 : b ≡ c) : a ≡ c :=
|
||
decidable.by_cases
|
||
(suppose num b = 0,
|
||
have num a = 0, from num_eq_zero_of_equiv (equiv.symm H1) `num b = 0`,
|
||
have num c = 0, from num_eq_zero_of_equiv H2 `num b = 0`,
|
||
equiv_of_num_eq_zero `num a = 0` `num c = 0`)
|
||
(suppose num b ≠ 0,
|
||
have H3 : num b * denom b ≠ 0, from mul_ne_zero this (ne_of_gt (denom_pos b)),
|
||
have H4 : (num b * denom b) * (num a * denom c) = (num b * denom b) * (num c * denom a),
|
||
from calc
|
||
(num b * denom b) * (num a * denom c) = (num a * denom b) * (num b * denom c) :
|
||
by rewrite [*mul.assoc, *mul.left_comm (num a), *mul.left_comm (num b)]
|
||
... = (num b * denom a) * (num b * denom c) : {H1}
|
||
... = (num b * denom a) * (num c * denom b) : {H2}
|
||
... = (num b * denom b) * (num c * denom a) :
|
||
by rewrite [*mul.assoc, *mul.left_comm (denom a),
|
||
*mul.left_comm (denom b), mul.comm (denom a)],
|
||
eq_of_mul_eq_mul_left H3 H4)
|
||
|
||
theorem equiv.is_equivalence : equivalence equiv :=
|
||
mk_equivalence equiv equiv.refl @equiv.symm @equiv.trans
|
||
|
||
definition setoid : setoid prerat :=
|
||
setoid.mk equiv equiv.is_equivalence
|
||
|
||
/- field operations -/
|
||
|
||
definition of_int (i : int) : prerat := prerat.mk i 1 !of_nat_succ_pos
|
||
|
||
definition zero : prerat := of_int 0
|
||
|
||
definition one : prerat := of_int 1
|
||
|
||
private theorem mul_denom_pos (a b : prerat) : denom a * denom b > 0 :=
|
||
mul_pos (denom_pos a) (denom_pos b)
|
||
|
||
definition add (a b : prerat) : prerat :=
|
||
prerat.mk (num a * denom b + num b * denom a) (denom a * denom b) (mul_denom_pos a b)
|
||
|
||
definition mul (a b : prerat) : prerat :=
|
||
prerat.mk (num a * num b) (denom a * denom b) (mul_denom_pos a b)
|
||
|
||
definition neg (a : prerat) : prerat :=
|
||
prerat.mk (- num a) (denom a) (denom_pos a)
|
||
|
||
definition smul (a : ℤ) (b : prerat) (H : a > 0) : prerat :=
|
||
prerat.mk (a * num b) (a * denom b) (mul_pos H (denom_pos b))
|
||
|
||
theorem of_int_add (a b : ℤ) : of_int (#int a + b) ≡ add (of_int a) (of_int b) :=
|
||
by esimp [equiv, num, denom, one, add, of_int]; rewrite [*int.mul_one]
|
||
|
||
theorem of_int_mul (a b : ℤ) : of_int (#int a * b) ≡ mul (of_int a) (of_int b) :=
|
||
!equiv.refl
|
||
|
||
theorem of_int_neg (a : ℤ) : of_int (#int -a) ≡ neg (of_int a) :=
|
||
!equiv.refl
|
||
|
||
theorem of_int.inj {a b : ℤ} : of_int a ≡ of_int b → a = b :=
|
||
by rewrite [↑of_int, ↑equiv, *mul_one]; intros; assumption
|
||
|
||
definition inv : prerat → prerat
|
||
| inv (prerat.mk nat.zero d dp) := zero
|
||
| inv (prerat.mk (nat.succ n) d dp) := prerat.mk d (nat.succ n) !of_nat_succ_pos
|
||
| inv (prerat.mk -[1+n] d dp) := prerat.mk (-d) (nat.succ n) !of_nat_succ_pos
|
||
|
||
theorem equiv_zero_of_num_eq_zero {a : prerat} (H : num a = 0) : a ≡ zero :=
|
||
by rewrite [↑equiv, H, ↑zero, ↑num, ↑of_int, *zero_mul]
|
||
|
||
theorem num_eq_zero_of_equiv_zero {a : prerat} : a ≡ zero → num a = 0 :=
|
||
by rewrite [↑equiv, ↑zero, ↑of_int, mul_one, zero_mul]; intro H; exact H
|
||
|
||
theorem inv_zero {d : int} (dp : d > 0) : inv (mk nat.zero d dp) = zero :=
|
||
begin rewrite [↑inv, ▸*] end
|
||
|
||
theorem inv_zero' : inv zero = zero := inv_zero (of_nat_succ_pos nat.zero)
|
||
|
||
theorem inv_of_pos {n d : int} (np : n > 0) (dp : d > 0) : inv (mk n d dp) ≡ mk d n np :=
|
||
obtain (n' : nat) (Hn' : n = of_nat n'), from exists_eq_of_nat (le_of_lt np),
|
||
have (#nat n' > nat.zero), from lt_of_of_nat_lt_of_nat (Hn' ▸ np),
|
||
obtain (k : nat) (Hk : n' = nat.succ k), from nat.exists_eq_succ_of_lt this,
|
||
have d * n = d * nat.succ k, by rewrite [Hn', Hk],
|
||
Hn'⁻¹ ▸ (Hk⁻¹ ▸ this)
|
||
|
||
theorem inv_neg {n d : int} (np : n > 0) (dp : d > 0) : inv (mk (-n) d dp) ≡ mk (-d) n np :=
|
||
obtain (n' : nat) (Hn' : n = of_nat n'), from exists_eq_of_nat (le_of_lt np),
|
||
have (#nat n' > nat.zero), from lt_of_of_nat_lt_of_nat (Hn' ▸ np),
|
||
obtain (k : nat) (Hk : n' = nat.succ k), from nat.exists_eq_succ_of_lt this,
|
||
have -d * n = -d * nat.succ k, by rewrite [Hn', Hk],
|
||
have H3 : inv (mk -[1+k] d dp) ≡ mk (-d) n np, from this,
|
||
have H4 : -[1+k] = -n, from calc
|
||
-[1+k] = -(nat.succ k) : rfl
|
||
... = -n : by rewrite [Hk⁻¹, Hn'],
|
||
H4 ▸ H3
|
||
|
||
theorem inv_of_neg {n d : int} (nn : n < 0) (dp : d > 0) :
|
||
inv (mk n d dp) ≡ mk (-d) (-n) (neg_pos_of_neg nn) :=
|
||
have inv (mk (-(-n)) d dp) ≡ mk (-d) (-n) (neg_pos_of_neg nn),
|
||
from inv_neg (neg_pos_of_neg nn) dp,
|
||
!neg_neg ▸ this
|
||
|
||
/- operations respect equiv -/
|
||
|
||
theorem add_equiv_add {a1 b1 a2 b2 : prerat} (eqv1 : a1 ≡ a2) (eqv2 : b1 ≡ b2) :
|
||
add a1 b1 ≡ add a2 b2 :=
|
||
calc
|
||
(num a1 * denom b1 + num b1 * denom a1) * (denom a2 * denom b2)
|
||
= num a1 * denom a2 * denom b1 * denom b2 + num b1 * denom b2 * denom a1 * denom a2 :
|
||
by rewrite [mul.right_distrib, *mul.assoc, mul.left_comm (denom b1),
|
||
mul.comm (denom b2), *mul.assoc]
|
||
... = num a2 * denom a1 * denom b1 * denom b2 + num b2 * denom b1 * denom a1 * denom a2 :
|
||
by rewrite [↑equiv at *, eqv1, eqv2]
|
||
... = (num a2 * denom b2 + num b2 * denom a2) * (denom a1 * denom b1) :
|
||
by rewrite [mul.right_distrib, *mul.assoc, *mul.left_comm (denom b2),
|
||
*mul.comm (denom b1), *mul.assoc, mul.left_comm (denom a2)]
|
||
|
||
theorem mul_equiv_mul {a1 b1 a2 b2 : prerat} (eqv1 : a1 ≡ a2) (eqv2 : b1 ≡ b2) :
|
||
mul a1 b1 ≡ mul a2 b2 :=
|
||
calc
|
||
(num a1 * num b1) * (denom a2 * denom b2)
|
||
= (num a1 * denom a2) * (num b1 * denom b2) : by rewrite [*mul.assoc, mul.left_comm (num b1)]
|
||
... = (num a2 * denom a1) * (num b2 * denom b1) : by rewrite [↑equiv at *, eqv1, eqv2]
|
||
... = (num a2 * num b2) * (denom a1 * denom b1) : by rewrite [*mul.assoc, mul.left_comm (num b2)]
|
||
|
||
theorem neg_equiv_neg {a b : prerat} (eqv : a ≡ b) : neg a ≡ neg b :=
|
||
calc
|
||
-num a * denom b = -(num a * denom b) : neg_mul_eq_neg_mul
|
||
... = -(num b * denom a) : {eqv}
|
||
... = -num b * denom a : neg_mul_eq_neg_mul
|
||
|
||
theorem inv_equiv_inv : ∀{a b : prerat}, a ≡ b → inv a ≡ inv b
|
||
| (mk an ad adp) (mk bn bd bdp) :=
|
||
assume H,
|
||
lt.by_cases
|
||
(assume an_neg : an < 0,
|
||
have bn_neg : bn < 0, from num_neg_of_equiv H an_neg,
|
||
calc
|
||
inv (mk an ad adp) ≡ mk (-ad) (-an) (neg_pos_of_neg an_neg) : inv_of_neg an_neg adp
|
||
... ≡ mk (-bd) (-bn) (neg_pos_of_neg bn_neg) :
|
||
by rewrite [↑equiv at *, ▸*, *neg_mul_neg, mul.comm ad, mul.comm bd, H]
|
||
... ≡ inv (mk bn bd bdp) : (inv_of_neg bn_neg bdp)⁻¹)
|
||
(assume an_zero : an = 0,
|
||
have bn_zero : bn = 0, from num_eq_zero_of_equiv H an_zero,
|
||
eq.subst (calc
|
||
inv (mk an ad adp) = inv (mk 0 ad adp) : {an_zero}
|
||
... = zero : inv_zero
|
||
... = inv (mk 0 bd bdp) : inv_zero
|
||
... = inv (mk bn bd bdp) : bn_zero) !equiv.refl)
|
||
(assume an_pos : an > 0,
|
||
have bn_pos : bn > 0, from num_pos_of_equiv H an_pos,
|
||
calc
|
||
inv (mk an ad adp) ≡ mk ad an an_pos : inv_of_pos an_pos adp
|
||
... ≡ mk bd bn bn_pos :
|
||
by rewrite [↑equiv at *, ▸*, mul.comm ad, mul.comm bd, H]
|
||
... ≡ inv (mk bn bd bdp) : (inv_of_pos bn_pos bdp)⁻¹)
|
||
|
||
theorem smul_equiv {a : ℤ} {b : prerat} (H : a > 0) : smul a b H ≡ b :=
|
||
by esimp[equiv, smul]; rewrite[mul.assoc, mul.left_comm]
|
||
|
||
/- properties -/
|
||
|
||
theorem add.comm (a b : prerat) : add a b ≡ add b a :=
|
||
by rewrite [↑add, ↑equiv, ▸*, add.comm, mul.comm (denom a)]
|
||
|
||
theorem add.assoc (a b c : prerat) : add (add a b) c ≡ add a (add b c) :=
|
||
by rewrite [↑add, ↑equiv, ▸*, *(mul.comm (num c)), *(λy, mul.comm y (denom a)), *mul.left_distrib,
|
||
*mul.right_distrib, *mul.assoc, *add.assoc]
|
||
|
||
theorem add_zero (a : prerat) : add a zero ≡ a :=
|
||
by rewrite [↑add, ↑equiv, ↑zero, ↑of_int, ▸*, *mul_one, zero_mul, add_zero]
|
||
|
||
theorem add.left_inv (a : prerat) : add (neg a) a ≡ zero :=
|
||
by rewrite [↑add, ↑equiv, ↑neg, ↑zero, ↑of_int, ▸*, -neg_mul_eq_neg_mul, add.left_inv, *zero_mul]
|
||
|
||
theorem mul.comm (a b : prerat) : mul a b ≡ mul b a :=
|
||
by rewrite [↑mul, ↑equiv, mul.comm (num a), mul.comm (denom a)]
|
||
|
||
theorem mul.assoc (a b c : prerat) : mul (mul a b) c ≡ mul a (mul b c) :=
|
||
by rewrite [↑mul, ↑equiv, *mul.assoc]
|
||
|
||
theorem mul_one (a : prerat) : mul a one ≡ a :=
|
||
by rewrite [↑mul, ↑one, ↑of_int, ↑equiv, ▸*, *mul_one]
|
||
|
||
theorem mul.left_distrib (a b c : prerat) : mul a (add b c) ≡ add (mul a b) (mul a c) :=
|
||
have H : smul (denom a) (mul a (add b c)) (denom_pos a) =
|
||
add (mul a b) (mul a c), from begin
|
||
rewrite[↑smul, ↑mul, ↑add],
|
||
congruence,
|
||
rewrite[*mul.left_distrib, *mul.right_distrib, -*int.mul.assoc],
|
||
have T : ∀ {x y z w : ℤ}, x*y*z*w=y*z*x*w, from
|
||
λx y z w, (!int.mul.assoc ⬝ !int.mul.comm) ▸ rfl,
|
||
exact !congr_arg2 T T,
|
||
exact !mul.left_comm ▸ !int.mul.assoc⁻¹
|
||
end,
|
||
equiv.symm (H ▸ smul_equiv (denom_pos a))
|
||
|
||
theorem mul_inv_cancel : ∀{a : prerat}, ¬ a ≡ zero → mul a (inv a) ≡ one
|
||
| (mk an ad adp) :=
|
||
assume H,
|
||
let a := mk an ad adp in
|
||
lt.by_cases
|
||
(assume an_neg : an < 0,
|
||
let ia := mk (-ad) (-an) (neg_pos_of_neg an_neg) in
|
||
calc
|
||
mul a (inv a) ≡ mul a ia : mul_equiv_mul !equiv.refl (inv_of_neg an_neg adp)
|
||
... ≡ one : begin
|
||
esimp [equiv, num, denom, one, mul, of_int],
|
||
rewrite [*int.mul_one, *int.one_mul, int.mul.comm,
|
||
neg_mul_comm]
|
||
end)
|
||
(assume an_zero : an = 0, absurd (equiv_zero_of_num_eq_zero an_zero) H)
|
||
(assume an_pos : an > 0,
|
||
let ia := mk ad an an_pos in
|
||
calc
|
||
mul a (inv a) ≡ mul a ia : mul_equiv_mul !equiv.refl (inv_of_pos an_pos adp)
|
||
... ≡ one : begin
|
||
esimp [equiv, num, denom, one, mul, of_int],
|
||
rewrite [*int.mul_one, *int.one_mul, int.mul.comm]
|
||
end)
|
||
|
||
theorem zero_not_equiv_one : ¬ zero ≡ one :=
|
||
begin
|
||
esimp [equiv, zero, one, of_int],
|
||
rewrite [zero_mul, int.mul_one],
|
||
exact zero_ne_one
|
||
end
|
||
|
||
theorem mul_denom_equiv (a : prerat) : mul a (of_int (denom a)) ≡ of_int (num a) :=
|
||
by esimp [mul, of_int, equiv]; rewrite [*int.mul_one]
|
||
|
||
/- Reducing a fraction to lowest terms. Needed to choose a canonical representative of rat, and
|
||
define numerator and denominator. -/
|
||
|
||
definition reduce : prerat → prerat
|
||
| (mk an ad adpos) :=
|
||
have pos : ad div gcd an ad > 0, from div_pos_of_pos_of_dvd adpos !gcd_nonneg !gcd_dvd_right,
|
||
if an = 0 then prerat.zero
|
||
else mk (an div gcd an ad) (ad div gcd an ad) pos
|
||
|
||
protected theorem eq {a b : prerat} (Hn : num a = num b) (Hd : denom a = denom b) : a = b :=
|
||
begin
|
||
cases a with [an, ad, adpos],
|
||
cases b with [bn, bd, bdpos],
|
||
generalize adpos, generalize bdpos,
|
||
esimp at *,
|
||
rewrite [Hn, Hd],
|
||
intros, apply rfl
|
||
end
|
||
|
||
theorem reduce_equiv : ∀ a : prerat, reduce a ≡ a
|
||
| (mk an ad adpos) :=
|
||
decidable.by_cases
|
||
(assume anz : an = 0,
|
||
by krewrite [↑reduce, if_pos anz, ↑equiv, anz, *zero_mul])
|
||
(assume annz : an ≠ 0,
|
||
by rewrite [↑reduce, if_neg annz, ↑equiv, int.mul.comm, -!mul_div_assoc !gcd_dvd_left,
|
||
-!mul_div_assoc !gcd_dvd_right, int.mul.comm])
|
||
|
||
theorem reduce_eq_reduce : ∀{a b : prerat}, a ≡ b → reduce a = reduce b
|
||
| (mk an ad adpos) (mk bn bd bdpos) :=
|
||
assume H : an * bd = bn * ad,
|
||
decidable.by_cases
|
||
(assume anz : an = 0,
|
||
have H' : bn * ad = 0, by rewrite [-H, anz, zero_mul],
|
||
assert bnz : bn = 0,
|
||
from or_resolve_left (eq_zero_or_eq_zero_of_mul_eq_zero H') (ne_of_gt adpos),
|
||
by rewrite [↑reduce, if_pos anz, if_pos bnz])
|
||
(assume annz : an ≠ 0,
|
||
assert bnnz : bn ≠ 0, from
|
||
assume bnz,
|
||
have H' : an * bd = 0, by rewrite [H, bnz, zero_mul],
|
||
have anz : an = 0,
|
||
from or_resolve_left (eq_zero_or_eq_zero_of_mul_eq_zero H') (ne_of_gt bdpos),
|
||
show false, from annz anz,
|
||
begin
|
||
rewrite [↑reduce, if_neg annz, if_neg bnnz],
|
||
apply prerat.eq,
|
||
{apply div_gcd_eq_div_gcd H adpos bdpos},
|
||
{esimp, rewrite [gcd.comm, gcd.comm bn],
|
||
apply div_gcd_eq_div_gcd_of_nonneg,
|
||
rewrite [int.mul.comm, -H, int.mul.comm],
|
||
apply annz,
|
||
apply bnnz,
|
||
apply le_of_lt adpos,
|
||
apply le_of_lt bdpos},
|
||
end)
|
||
|
||
end prerat
|
||
|
||
/-
|
||
the rationals
|
||
-/
|
||
|
||
definition rat : Type.{1} := quot prerat.setoid
|
||
notation `ℚ` := rat
|
||
|
||
local attribute prerat.setoid [instance]
|
||
|
||
namespace rat
|
||
|
||
/- operations -/
|
||
|
||
definition of_int [coercion] (i : ℤ) : ℚ := ⟦prerat.of_int i⟧
|
||
definition of_nat [coercion] (n : ℕ) : ℚ := ⟦prerat.of_int n⟧
|
||
definition of_num [coercion] [reducible] (n : num) : ℚ := of_int (int.of_num n)
|
||
|
||
definition add : ℚ → ℚ → ℚ :=
|
||
quot.lift₂
|
||
(λ a b : prerat, ⟦prerat.add a b⟧)
|
||
(take a1 a2 b1 b2, assume H1 H2, quot.sound (prerat.add_equiv_add H1 H2))
|
||
|
||
definition mul : ℚ → ℚ → ℚ :=
|
||
quot.lift₂
|
||
(λ a b : prerat, ⟦prerat.mul a b⟧)
|
||
(take a1 a2 b1 b2, assume H1 H2, quot.sound (prerat.mul_equiv_mul H1 H2))
|
||
|
||
definition neg : ℚ → ℚ :=
|
||
quot.lift
|
||
(λ a : prerat, ⟦prerat.neg a⟧)
|
||
(take a1 a2, assume H, quot.sound (prerat.neg_equiv_neg H))
|
||
|
||
definition inv : ℚ → ℚ :=
|
||
quot.lift
|
||
(λ a : prerat, ⟦prerat.inv a⟧)
|
||
(take a1 a2, assume H, quot.sound (prerat.inv_equiv_inv H))
|
||
|
||
definition reduce : ℚ → prerat :=
|
||
quot.lift
|
||
(λ a : prerat, prerat.reduce a)
|
||
@prerat.reduce_eq_reduce
|
||
|
||
definition num (a : ℚ) : ℤ := prerat.num (reduce a)
|
||
definition denom (a : ℚ) : ℤ := prerat.denom (reduce a)
|
||
|
||
theorem denom_pos (a : ℚ): denom a > 0 :=
|
||
prerat.denom_pos (reduce a)
|
||
|
||
protected definition prio := num.pred int.prio
|
||
|
||
infix [priority rat.prio] + := rat.add
|
||
infix [priority rat.prio] * := rat.mul
|
||
prefix [priority rat.prio] - := rat.neg
|
||
|
||
definition sub [reducible] (a b : rat) : rat := a + (-b)
|
||
|
||
postfix [priority rat.prio] ⁻¹ := rat.inv
|
||
infix [priority rat.prio] - := rat.sub
|
||
|
||
/- properties -/
|
||
|
||
theorem of_int_add (a b : ℤ) : of_int (#int a + b) = of_int a + of_int b :=
|
||
quot.sound (prerat.of_int_add a b)
|
||
|
||
theorem of_int_mul (a b : ℤ) : of_int (#int a * b) = of_int a * of_int b :=
|
||
quot.sound (prerat.of_int_mul a b)
|
||
|
||
theorem of_int_neg (a : ℤ) : of_int (#int -a) = -(of_int a) :=
|
||
quot.sound (prerat.of_int_neg a)
|
||
|
||
theorem of_int_sub (a b : ℤ) : of_int (#int a - b) = of_int a - of_int b :=
|
||
calc
|
||
of_int (#int a - b) = of_int a + of_int (#int -b) : of_int_add
|
||
... = of_int a - of_int b : {of_int_neg b}
|
||
|
||
theorem of_int.inj {a b : ℤ} (H : of_int a = of_int b) : a = b :=
|
||
prerat.of_int.inj (quot.exact H)
|
||
|
||
theorem of_nat_eq (a : ℕ) : of_nat a = of_int (int.of_nat a) := rfl
|
||
|
||
theorem of_nat_add (a b : ℕ) : of_nat (#nat a + b) = of_nat a + of_nat b :=
|
||
by rewrite [*of_nat_eq, int.of_nat_add, rat.of_int_add]
|
||
|
||
theorem of_nat_mul (a b : ℕ) : of_nat (#nat a * b) = of_nat a * of_nat b :=
|
||
by rewrite [*of_nat_eq, int.of_nat_mul, rat.of_int_mul]
|
||
|
||
theorem of_nat_sub {a b : ℕ} (H : #nat a ≥ b) : of_nat (#nat a - b) = of_nat a - of_nat b :=
|
||
by rewrite [*of_nat_eq, int.of_nat_sub H, rat.of_int_sub]
|
||
|
||
theorem add.comm (a b : ℚ) : a + b = b + a :=
|
||
quot.induction_on₂ a b (take u v, quot.sound !prerat.add.comm)
|
||
|
||
theorem add.assoc (a b c : ℚ) : a + b + c = a + (b + c) :=
|
||
quot.induction_on₃ a b c (take u v w, quot.sound !prerat.add.assoc)
|
||
|
||
theorem add_zero (a : ℚ) : a + 0 = a :=
|
||
quot.induction_on a (take u, quot.sound !prerat.add_zero)
|
||
|
||
theorem zero_add (a : ℚ) : 0 + a = a := !add.comm ▸ !add_zero
|
||
|
||
theorem add.left_inv (a : ℚ) : -a + a = 0 :=
|
||
quot.induction_on a (take u, quot.sound !prerat.add.left_inv)
|
||
|
||
theorem mul.comm (a b : ℚ) : a * b = b * a :=
|
||
quot.induction_on₂ a b (take u v, quot.sound !prerat.mul.comm)
|
||
|
||
theorem mul.assoc (a b c : ℚ) : a * b * c = a * (b * c) :=
|
||
quot.induction_on₃ a b c (take u v w, quot.sound !prerat.mul.assoc)
|
||
|
||
theorem mul_one (a : ℚ) : a * 1 = a :=
|
||
quot.induction_on a (take u, quot.sound !prerat.mul_one)
|
||
|
||
theorem one_mul (a : ℚ) : 1 * a = a := !mul.comm ▸ !mul_one
|
||
|
||
theorem mul.left_distrib (a b c : ℚ) : a * (b + c) = a * b + a * c :=
|
||
quot.induction_on₃ a b c (take u v w, quot.sound !prerat.mul.left_distrib)
|
||
|
||
theorem mul.right_distrib (a b c : ℚ) : (a + b) * c = a * c + b * c :=
|
||
by rewrite [mul.comm, mul.left_distrib, *mul.comm c]
|
||
|
||
theorem mul_inv_cancel {a : ℚ} : a ≠ 0 → a * a⁻¹ = 1 :=
|
||
quot.induction_on a
|
||
(take u,
|
||
assume H,
|
||
quot.sound (!prerat.mul_inv_cancel (assume H1, H (quot.sound H1))))
|
||
|
||
theorem inv_mul_cancel {a : ℚ} (H : a ≠ 0) : a⁻¹ * a = 1 :=
|
||
!mul.comm ▸ mul_inv_cancel H
|
||
|
||
theorem zero_ne_one : (0 : ℚ) ≠ 1 :=
|
||
assume H, prerat.zero_not_equiv_one (quot.exact H)
|
||
|
||
definition has_decidable_eq [instance] : decidable_eq ℚ :=
|
||
take a b, quot.rec_on_subsingleton₂ a b
|
||
(take u v,
|
||
if H : prerat.num u * prerat.denom v = prerat.num v * prerat.denom u
|
||
then decidable.inl (quot.sound H)
|
||
else decidable.inr (assume H1, H (quot.exact H1)))
|
||
|
||
theorem inv_zero : inv 0 = 0 :=
|
||
quot.sound (prerat.inv_zero' ▸ !prerat.equiv.refl)
|
||
|
||
theorem quot_reduce (a : ℚ) : ⟦reduce a⟧ = a :=
|
||
quot.induction_on a (take u, quot.sound !prerat.reduce_equiv)
|
||
|
||
theorem mul_denom (a : ℚ) : a * denom a = num a :=
|
||
have H : ⟦reduce a⟧ * of_int (denom a) = of_int (num a), from quot.sound (!prerat.mul_denom_equiv),
|
||
quot_reduce a ▸ H
|
||
|
||
theorem coprime_num_denom (a : ℚ) : coprime (num a) (denom a) :=
|
||
decidable.by_cases
|
||
(suppose a = 0, by substvars)
|
||
(quot.induction_on a
|
||
(take u H,
|
||
assert H' : prerat.num u ≠ 0, from take H'', H (quot.sound (prerat.equiv_zero_of_num_eq_zero H'')),
|
||
begin
|
||
cases u with un ud udpos,
|
||
rewrite [▸*, ↑num, ↑denom, ↑reduce, ↑prerat.reduce, if_neg H', ▸*],
|
||
have gcd un ud ≠ 0, from ne_of_gt (!gcd_pos_of_ne_zero_left H'),
|
||
apply coprime_div_gcd_div_gcd this
|
||
end))
|
||
|
||
section migrate_algebra
|
||
open [classes] algebra
|
||
|
||
protected definition discrete_field [reducible] : algebra.discrete_field rat :=
|
||
⦃algebra.discrete_field,
|
||
add := add,
|
||
add_assoc := add.assoc,
|
||
zero := 0,
|
||
zero_add := zero_add,
|
||
add_zero := add_zero,
|
||
neg := neg,
|
||
add_left_inv := add.left_inv,
|
||
add_comm := add.comm,
|
||
mul := mul,
|
||
mul_assoc := mul.assoc,
|
||
one := 1,
|
||
one_mul := one_mul,
|
||
mul_one := mul_one,
|
||
left_distrib := mul.left_distrib,
|
||
right_distrib := mul.right_distrib,
|
||
mul_comm := mul.comm,
|
||
mul_inv_cancel := @mul_inv_cancel,
|
||
inv_mul_cancel := @inv_mul_cancel,
|
||
zero_ne_one := zero_ne_one,
|
||
inv_zero := inv_zero,
|
||
has_decidable_eq := has_decidable_eq⦄
|
||
|
||
local attribute rat.discrete_field [instance]
|
||
|
||
definition divide (a b : rat) := algebra.divide a b
|
||
infix [priority rat.prio] `/` := divide
|
||
|
||
definition dvd (a b : rat) := algebra.dvd a b
|
||
|
||
definition pow (a : ℚ) (n : ℕ) : ℚ := algebra.pow a n
|
||
infix [priority rat.prio] ^ := pow
|
||
definition nmul (n : ℕ) (a : ℚ) : ℚ := algebra.nmul n a
|
||
infix [priority rat.prio] `⬝` := nmul
|
||
definition imul (i : ℤ) (a : ℚ) : ℚ := algebra.imul i a
|
||
|
||
migrate from algebra with rat
|
||
replacing sub → rat.sub, divide → divide, dvd → dvd, pow → pow, nmul → nmul, imul → imul
|
||
|
||
end migrate_algebra
|
||
|
||
theorem eq_num_div_denom (a : ℚ) : a = num a / denom a :=
|
||
have H : of_int (denom a) ≠ 0, from assume H', ne_of_gt (denom_pos a) (of_int.inj H'),
|
||
iff.mpr (eq_div_iff_mul_eq H) (mul_denom a)
|
||
|
||
theorem of_int_div {a b : ℤ} (H : b ∣ a) : of_int (a div b) = of_int a / of_int b :=
|
||
decidable.by_cases
|
||
(assume bz : b = 0,
|
||
by rewrite [bz, div_zero, int.div_zero])
|
||
(assume bnz : b ≠ 0,
|
||
have bnz' : of_int b ≠ 0, from assume oibz, bnz (of_int.inj oibz),
|
||
have H' : of_int (a div b) * of_int b = of_int a, from
|
||
int.dvd.elim H
|
||
(take c, assume Hc : a = b * c,
|
||
by rewrite [Hc, !int.mul_div_cancel_left bnz, mul.comm]),
|
||
iff.mpr (eq_div_iff_mul_eq bnz') H')
|
||
|
||
theorem of_int_pow (a : ℤ) (n : ℕ) : of_int (a^n) = (of_int a)^n :=
|
||
begin
|
||
induction n with n ih,
|
||
apply eq.refl,
|
||
rewrite [pow_succ, int.pow_succ, of_int_mul, ih]
|
||
end
|
||
|
||
end rat
|