lean2/hott/algebra/precategory/constructions.hlean
2015-03-27 17:54:48 -07:00

268 lines
9.7 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.precategory.constructions
Authors: Floris van Doorn, Jakob von Raumer
This file contains basic constructions on precategories, including common precategories
-/
import .nat_trans
import types.prod types.sigma types.pi
open eq prod eq eq.ops equiv is_trunc
namespace category
namespace opposite
definition opposite [reducible] {ob : Type} (C : precategory ob) : precategory ob :=
precategory.mk (λ a b, hom b a)
(λ a b, !homH)
(λ a b c f g, g ∘ f)
(λ a, id)
(λ a b c d f g h, !assoc⁻¹)
(λ a b f, !id_right)
(λ a b f, !id_left)
definition Opposite [reducible] (C : Precategory) : Precategory := precategory.Mk (opposite C)
infixr `∘op`:60 := @comp _ (opposite _) _ _ _
variables {C : Precategory} {a b c : C}
set_option apply.class_instance false -- disable class instance resolution in the apply tactic
definition compose_op {f : hom a b} {g : hom b c} : f ∘op g = g ∘ f := idp
-- TODO: Decide whether just to use funext for this theorem or
-- take the trick they use in Coq-HoTT, and introduce a further
-- axiom in the definition of precategories that provides thee
-- symmetric associativity proof.
definition opposite_opposite' {ob : Type} (C : precategory ob) : opposite (opposite C) = C :=
begin
apply (precategory.rec_on C), intros [hom', homH', comp', ID', assoc', id_left', id_right'],
apply (ap (λassoc'', precategory.mk hom' @homH' comp' ID' assoc'' id_left' id_right')),
repeat (apply eq_of_homotopy ; intros ),
apply ap,
apply (@is_hset.elim), apply !homH',
end
definition opposite_opposite : Opposite (Opposite C) = C :=
(ap (Precategory.mk C) (opposite_opposite' C)) ⬝ !Precategory.eta
end opposite
-- Note: Discrete precategory doesn't really make sense in HoTT,
-- We'll define a discrete _category_ later.
/-section
open decidable unit empty
variables {A : Type} [H : decidable_eq A]
include H
definition set_hom (a b : A) := decidable.rec_on (H a b) (λh, unit) (λh, empty)
theorem set_hom_subsingleton [instance] (a b : A) : subsingleton (set_hom a b) := _
definition set_compose {a b c : A} (g : set_hom b c) (f : set_hom a b) : set_hom a c :=
decidable.rec_on
(H b c)
(λ Hbc g, decidable.rec_on
(H a b)
(λ Hab f, rec_on_true (trans Hab Hbc) ⋆)
(λh f, empty.rec _ f) f)
(λh (g : empty), empty.rec _ g) g
omit H
definition discrete_precategory (A : Type) [H : decidable_eq A] : precategory A :=
mk (λa b, set_hom a b)
(λ a b c g f, set_compose g f)
(λ a, decidable.rec_on_true rfl ⋆)
(λ a b c d h g f, @subsingleton.elim (set_hom a d) _ _ _)
(λ a b f, @subsingleton.elim (set_hom a b) _ _ _)
(λ a b f, @subsingleton.elim (set_hom a b) _ _ _)
definition Discrete_category (A : Type) [H : decidable_eq A] := Mk (discrete_category A)
end
section
open unit bool
definition category_one := discrete_category unit
definition Category_one := Mk category_one
definition category_two := discrete_category bool
definition Category_two := Mk category_two
end-/
namespace product
section
open prod is_trunc
definition precategory_prod [reducible] {obC obD : Type} (C : precategory obC) (D : precategory obD)
: precategory (obC × obD) :=
precategory.mk (λ a b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b))
(λ a b, !is_trunc_prod)
(λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f))
(λ a, (id, id))
(λ a b c d h g f, pair_eq !assoc !assoc )
(λ a b f, prod_eq !id_left !id_left )
(λ a b f, prod_eq !id_right !id_right)
definition Precategory_prod [reducible] (C D : Precategory) : Precategory :=
precategory.Mk (precategory_prod C D)
end
end product
namespace ops
--notation 1 := Category_one
--notation 2 := Category_two
postfix `ᵒᵖ`:max := opposite.Opposite
infixr `×c`:30 := product.Precategory_prod
--instance [persistent] type_category category_one
-- category_two product.prod_category
end ops
open ops
namespace opposite
open ops functor
definition opposite_functor [reducible] {C D : Precategory} (F : C ⇒ D) : Cᵒᵖ ⇒ Dᵒᵖ :=
begin
apply (@functor.mk (Cᵒᵖ) (Dᵒᵖ)),
intro a, apply (respect_id F),
intros, apply (@respect_comp C D)
end
end opposite
namespace product
section
open ops functor
definition prod_functor [reducible] {C C' D D' : Precategory} (F : C ⇒ D) (G : C' ⇒ D') : C ×c C' ⇒ D ×c D' :=
functor.mk (λ a, pair (F (pr1 a)) (G (pr2 a)))
(λ a b f, pair (F (pr1 f)) (G (pr2 f)))
(λ a, pair_eq !respect_id !respect_id)
(λ a b c g f, pair_eq !respect_comp !respect_comp)
end
end product
definition precategory_hset [reducible] : precategory hset :=
precategory.mk (λx y : hset, x → y)
_
(λx y z g f a, g (f a))
(λx a, a)
(λx y z w h g f, eq_of_homotopy (λa, idp))
(λx y f, eq_of_homotopy (λa, idp))
(λx y f, eq_of_homotopy (λa, idp))
definition Precategory_hset [reducible] : Precategory :=
Precategory.mk hset precategory_hset
section
open iso functor nat_trans
definition precategory_functor [instance] [reducible] (D C : Precategory)
: precategory (functor C D) :=
precategory.mk (λa b, nat_trans a b)
(λ a b, @is_hset_nat_trans C D a b)
(λ a b c g f, nat_trans.compose g f)
(λ a, nat_trans.id)
(λ a b c d h g f, !nat_trans.assoc)
(λ a b f, !nat_trans.id_left)
(λ a b f, !nat_trans.id_right)
definition Precategory_functor [reducible] (D C : Precategory) : Precategory :=
precategory.Mk (precategory_functor D C)
end
namespace ops
infixr `^c`:35 := Precategory_functor
end ops
section
open iso functor nat_trans
/- we prove that if a natural transformation is pointwise an to_fun, then it is an to_fun -/
variables {C D : Precategory} {F G : C ⇒ D} (η : F ⟹ G) [iso : Π(a : C), is_iso (η a)]
include iso
definition nat_trans_inverse : G ⟹ F :=
nat_trans.mk
(λc, (η c)⁻¹)
(λc d f,
begin
apply comp_inverse_eq_of_eq_comp,
apply concat, rotate_left 1, apply assoc,
apply eq_inverse_comp_of_comp_eq,
apply inverse,
apply naturality,
end)
definition nat_trans_left_inverse : nat_trans_inverse η ∘n η = nat_trans.id :=
begin
fapply (apD011 nat_trans.mk),
apply eq_of_homotopy, intro c, apply left_inverse,
apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros,
apply is_hset.elim
end
definition nat_trans_right_inverse : η ∘n nat_trans_inverse η = nat_trans.id :=
begin
fapply (apD011 nat_trans.mk),
apply eq_of_homotopy, intro c, apply right_inverse,
apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros,
apply is_hset.elim
end
definition is_iso_nat_trans : is_iso η :=
is_iso.mk (nat_trans_left_inverse η) (nat_trans_right_inverse η)
omit iso
-- local attribute is_iso_nat_trans [instance]
-- definition functor_iso_functor (H : Π(a : C), F a ≅ G a) : F ≅ G := -- is this true?
-- iso.mk _
end
section
open iso functor category.ops nat_trans iso.iso
/- and conversely, if a natural transformation is an iso, it is componentwise an iso -/
variables {C D : Precategory} {F G : D ^c C} (η : hom F G) [isoη : is_iso η] (c : C)
include isoη
definition componentwise_is_iso : is_iso (η c) :=
@is_iso.mk _ _ _ _ _ (natural_map η⁻¹ c) (ap010 natural_map ( left_inverse η) c)
(ap010 natural_map (right_inverse η) c)
local attribute componentwise_is_iso [instance]
definition natural_map_inverse : natural_map η⁻¹ c = (η c)⁻¹ := idp
definition naturality_iso {c c' : C} (f : c ⟶ c') : G f = η c' ∘ F f ∘ (η c)⁻¹ :=
calc
G f = (G f ∘ η c) ∘ (η c)⁻¹ : comp_inverse_cancel_right
... = (η c' ∘ F f) ∘ (η c)⁻¹ : {naturality η f}
... = η c' ∘ F f ∘ (η c)⁻¹ : assoc
definition naturality_iso' {c c' : C} (f : c ⟶ c') : (η c')⁻¹ ∘ G f ∘ η c = F f :=
calc
(η c')⁻¹ ∘ G f ∘ η c = (η c')⁻¹ ∘ η c' ∘ F f : {naturality η f}
... = F f : inverse_comp_cancel_left
omit isoη
definition componentwise_iso (η : F ≅ G) (c : C) : F c ≅ G c :=
@iso.mk _ _ _ _ (natural_map (to_hom η) c)
(@componentwise_is_iso _ _ _ _ (to_hom η) (struct η) c)
definition componentwise_iso_id (c : C) : componentwise_iso (iso.refl F) c = iso.refl (F c) :=
iso.eq_mk (idpath id)
definition componentwise_iso_iso_of_eq (p : F = G) (c : C)
: componentwise_iso (iso_of_eq p) c = iso_of_eq (ap010 to_fun_ob p c) :=
eq.rec_on p !componentwise_iso_id
definition natural_map_hom_of_eq (p : F = G) (c : C)
: natural_map (hom_of_eq p) c = hom_of_eq (ap010 to_fun_ob p c) :=
eq.rec_on p idp
definition natural_map_inv_of_eq (p : F = G) (c : C)
: natural_map (inv_of_eq p) c = hom_of_eq (ap010 to_fun_ob p c)⁻¹ :=
eq.rec_on p idp
end
namespace ops
infixr `×f`:30 := product.prod_functor
infixr `ᵒᵖᶠ`:(max+1) := opposite.opposite_functor
end ops
end category