lean2/hott/hit/coeq.hlean
2015-11-22 14:21:25 -08:00

92 lines
3 KiB
Text

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Declaration of the coequalizer
-/
import .quotient
open quotient eq equiv equiv.ops is_trunc
namespace coeq
section
universe u
parameters {A B : Type.{u}} (f g : A → B)
inductive coeq_rel : B → B → Type :=
| Rmk : Π(x : A), coeq_rel (f x) (g x)
open coeq_rel
local abbreviation R := coeq_rel
definition coeq : Type := quotient coeq_rel -- TODO: define this in root namespace
definition coeq_i (x : B) : coeq :=
class_of R x
/- cp is the name Coq uses. I don't know what it abbreviates, but at least it's short :-) -/
definition cp (x : A) : coeq_i (f x) = coeq_i (g x) :=
eq_of_rel coeq_rel (Rmk f g x)
protected definition rec {P : coeq → Type} (P_i : Π(x : B), P (coeq_i x))
(Pcp : Π(x : A), P_i (f x) =[cp x] P_i (g x)) (y : coeq) : P y :=
begin
induction y,
{ apply P_i},
{ cases H, apply Pcp}
end
protected definition rec_on [reducible] {P : coeq → Type} (y : coeq)
(P_i : Π(x : B), P (coeq_i x)) (Pcp : Π(x : A), P_i (f x) =[cp x] P_i (g x)) : P y :=
rec P_i Pcp y
theorem rec_cp {P : coeq → Type} (P_i : Π(x : B), P (coeq_i x))
(Pcp : Π(x : A), P_i (f x) =[cp x] P_i (g x))
(x : A) : apdo (rec P_i Pcp) (cp x) = Pcp x :=
!rec_eq_of_rel
protected definition elim {P : Type} (P_i : B → P)
(Pcp : Π(x : A), P_i (f x) = P_i (g x)) (y : coeq) : P :=
rec P_i (λx, pathover_of_eq (Pcp x)) y
protected definition elim_on [reducible] {P : Type} (y : coeq) (P_i : B → P)
(Pcp : Π(x : A), P_i (f x) = P_i (g x)) : P :=
elim P_i Pcp y
theorem elim_cp {P : Type} (P_i : B → P) (Pcp : Π(x : A), P_i (f x) = P_i (g x))
(x : A) : ap (elim P_i Pcp) (cp x) = Pcp x :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant (cp x)),
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑elim,rec_cp],
end
protected definition elim_type (P_i : B → Type)
(Pcp : Π(x : A), P_i (f x) ≃ P_i (g x)) (y : coeq) : Type :=
elim P_i (λx, ua (Pcp x)) y
protected definition elim_type_on [reducible] (y : coeq) (P_i : B → Type)
(Pcp : Π(x : A), P_i (f x) ≃ P_i (g x)) : Type :=
elim_type P_i Pcp y
theorem elim_type_cp (P_i : B → Type) (Pcp : Π(x : A), P_i (f x) ≃ P_i (g x))
(x : A) : transport (elim_type P_i Pcp) (cp x) = Pcp x :=
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_cp];apply cast_ua_fn
protected definition rec_hprop {P : coeq → Type} [H : Πx, is_hprop (P x)]
(P_i : Π(x : B), P (coeq_i x)) (y : coeq) : P y :=
rec P_i (λa, !is_hprop.elimo) y
protected definition elim_hprop {P : Type} [H : is_hprop P] (P_i : B → P) (y : coeq) : P :=
elim P_i (λa, !is_hprop.elim) y
end
end coeq
attribute coeq.coeq_i [constructor]
attribute coeq.rec coeq.elim [unfold 8] [recursor 8]
attribute coeq.elim_type [unfold 7]
attribute coeq.rec_on coeq.elim_on [unfold 6]
attribute coeq.elim_type_on [unfold 5]