d2eb99bf11
choice axiom is now in the classical namespace.
30 lines
1.2 KiB
Text
30 lines
1.2 KiB
Text
-- BEGINWAIT
|
||
-- ENDWAIT
|
||
-- BEGINFINDP STALE
|
||
false|Prop
|
||
false.rec|Π (C : Type), false → C
|
||
false.elim|false → ?c
|
||
false.of_ne|?a ≠ ?a → false
|
||
false.rec_on|Π (C : Type), false → C
|
||
false.cases_on|Π (C : Type), false → C
|
||
false.induction_on|∀ (C : Prop), false → C
|
||
true_ne_false|¬true = false
|
||
nat.lt_self_iff_false|∀ (n : nat), nat.lt n n ↔ false
|
||
not_of_is_false|is_false ?c → ¬?c
|
||
not_of_iff_false|(?a ↔ false) → ¬?a
|
||
is_false|Π (c : Prop) [H : decidable c], Prop
|
||
classical.eq_true_or_eq_false|∀ (a : Prop), a = true ∨ a = false
|
||
classical.eq_false_or_eq_true|∀ (a : Prop), a = false ∨ a = true
|
||
nat.lt_zero_iff_false|∀ (a : nat), nat.lt a nat.zero ↔ false
|
||
not_of_eq_false|?p = false → ¬?p
|
||
nat.succ_le_self_iff_false|∀ (n : nat), nat.le (nat.succ n) n ↔ false
|
||
decidable.rec_on_false|Π (H3 : ¬?p), ?H2 H3 → decidable.rec_on ?H ?H1 ?H2
|
||
not_false|¬false
|
||
decidable_false|decidable false
|
||
of_not_is_false|¬is_false ?c → ?c
|
||
classical.cases_true_false|∀ (P : Prop → Prop), P true → P false → (∀ (a : Prop), P a)
|
||
iff_false_intro|¬?a → (?a ↔ false)
|
||
ne_false_of_self|?p → ?p ≠ false
|
||
nat.succ_le_zero_iff_false|∀ (n : nat), nat.le (nat.succ n) nat.zero ↔ false
|
||
tactic.exfalso|tactic
|
||
-- ENDFINDP
|