174 lines
6.6 KiB
Text
174 lines
6.6 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Authors: Floris van Doorn
|
|
|
|
Comma category
|
|
-/
|
|
|
|
import ..functor.basic ..strict ..category
|
|
|
|
open eq functor equiv sigma sigma.ops is_trunc iso is_equiv
|
|
|
|
namespace category
|
|
|
|
structure comma_object {A B C : Precategory} (S : A ⇒ C) (T : B ⇒ C) :=
|
|
(a : A)
|
|
(b : B)
|
|
(f : S a ⟶ T b)
|
|
abbreviation ob1 [unfold 6] := @comma_object.a
|
|
abbreviation ob2 [unfold 6] := @comma_object.b
|
|
abbreviation mor [unfold 6] := @comma_object.f
|
|
|
|
variables {A B C : Precategory} (S : A ⇒ C) (T : B ⇒ C)
|
|
|
|
definition comma_object_sigma_char : (Σ(a : A) (b : B), S a ⟶ T b) ≃ comma_object S T :=
|
|
begin
|
|
fapply equiv.MK,
|
|
{ intro u, exact comma_object.mk u.1 u.2.1 u.2.2},
|
|
{ intro x, cases x with a b f, exact ⟨a, b, f⟩},
|
|
{ intro x, cases x, reflexivity},
|
|
{ intro u, cases u with u1 u2, cases u2, reflexivity},
|
|
end
|
|
|
|
theorem is_trunc_comma_object (n : trunc_index) [HA : is_trunc n A]
|
|
[HB : is_trunc n B] [H : Π(s d : C), is_trunc n (hom s d)] : is_trunc n (comma_object S T) :=
|
|
by apply is_trunc_equiv_closed;apply comma_object_sigma_char
|
|
|
|
variables {S T}
|
|
definition comma_object_eq' {x y : comma_object S T} (p : ob1 x = ob1 y) (q : ob2 x = ob2 y)
|
|
(r : mor x =[ap011 (@hom C C) (ap (to_fun_ob S) p) (ap (to_fun_ob T) q)] mor y) : x = y :=
|
|
begin
|
|
cases x with a b f, cases y with a' b' f', cases p, cases q,
|
|
esimp [ap011,congr,ap,subst] at r,
|
|
eapply (idp_rec_on r), reflexivity
|
|
end
|
|
|
|
--TODO: remove. This is a different version where Hq is not in square brackets
|
|
-- definition eq_comp_inverse_of_comp_eq' {ob : Type} {C : precategory ob} {d c b : ob} {r : hom c d}
|
|
-- {q : hom b c} {x : hom b d} {Hq : is_iso q} (p : r ∘ q = x) : r = x ∘ q⁻¹ʰ :=
|
|
-- sorry
|
|
-- := sorry --eq_inverse_comp_of_comp_eq p
|
|
|
|
definition comma_object_eq {x y : comma_object S T} (p : ob1 x = ob1 y) (q : ob2 x = ob2 y)
|
|
(r : T (hom_of_eq q) ∘ mor x ∘ S (inv_of_eq p) = mor y) : x = y :=
|
|
begin
|
|
cases x with a b f, cases y with a' b' f', cases p, cases q,
|
|
apply ap (comma_object.mk a' b'),
|
|
rewrite [▸* at r, -r, +respect_id, id_leftright]
|
|
end
|
|
|
|
definition ap_ob1_comma_object_eq' (x y : comma_object S T) (p : ob1 x = ob1 y) (q : ob2 x = ob2 y)
|
|
(r : mor x =[ap011 (@hom C C) (ap (to_fun_ob S) p) (ap (to_fun_ob T) q)] mor y)
|
|
: ap ob1 (comma_object_eq' p q r) = p :=
|
|
begin
|
|
cases x with a b f, cases y with a' b' f', cases p, cases q,
|
|
eapply (idp_rec_on r), reflexivity
|
|
end
|
|
|
|
definition ap_ob2_comma_object_eq' (x y : comma_object S T) (p : ob1 x = ob1 y) (q : ob2 x = ob2 y)
|
|
(r : mor x =[ap011 (@hom C C) (ap (to_fun_ob S) p) (ap (to_fun_ob T) q)] mor y)
|
|
: ap ob2 (comma_object_eq' p q r) = q :=
|
|
begin
|
|
cases x with a b f, cases y with a' b' f', cases p, cases q,
|
|
eapply (idp_rec_on r), reflexivity
|
|
end
|
|
|
|
structure comma_morphism (x y : comma_object S T) :=
|
|
mk' ::
|
|
(g : ob1 x ⟶ ob1 y)
|
|
(h : ob2 x ⟶ ob2 y)
|
|
(p : T h ∘ mor x = mor y ∘ S g)
|
|
(p' : mor y ∘ S g = T h ∘ mor x)
|
|
abbreviation mor1 := @comma_morphism.g
|
|
abbreviation mor2 := @comma_morphism.h
|
|
abbreviation coh := @comma_morphism.p
|
|
abbreviation coh' := @comma_morphism.p'
|
|
|
|
protected definition comma_morphism.mk [constructor] [reducible]
|
|
{x y : comma_object S T} (g h p) : comma_morphism x y :=
|
|
comma_morphism.mk' g h p p⁻¹
|
|
|
|
variables (x y z w : comma_object S T)
|
|
definition comma_morphism_sigma_char :
|
|
(Σ(g : ob1 x ⟶ ob1 y) (h : ob2 x ⟶ ob2 y), T h ∘ mor x = mor y ∘ S g) ≃ comma_morphism x y :=
|
|
begin
|
|
fapply equiv.MK,
|
|
{ intro u, exact (comma_morphism.mk u.1 u.2.1 u.2.2)},
|
|
{ intro f, cases f with g h p p', exact ⟨g, h, p⟩},
|
|
{ intro f, cases f with g h p p', esimp,
|
|
apply ap (comma_morphism.mk' g h p), apply is_prop.elim},
|
|
{ intro u, cases u with u1 u2, cases u2 with u2 u3, reflexivity},
|
|
end
|
|
|
|
theorem is_trunc_comma_morphism (n : trunc_index) [H1 : is_trunc n (ob1 x ⟶ ob1 y)]
|
|
[H2 : is_trunc n (ob2 x ⟶ ob2 y)] [Hp : Πm1 m2, is_trunc n (T m2 ∘ mor x = mor y ∘ S m1)]
|
|
: is_trunc n (comma_morphism x y) :=
|
|
by apply is_trunc_equiv_closed; apply comma_morphism_sigma_char
|
|
|
|
variables {x y z w}
|
|
definition comma_morphism_eq {f f' : comma_morphism x y}
|
|
(p : mor1 f = mor1 f') (q : mor2 f = mor2 f') : f = f' :=
|
|
begin
|
|
cases f with g h p₁ p₁', cases f' with g' h' p₂ p₂', cases p, cases q,
|
|
apply ap011 (comma_morphism.mk' g' h'),
|
|
apply is_prop.elim,
|
|
apply is_prop.elim
|
|
end
|
|
|
|
definition comma_compose (g : comma_morphism y z) (f : comma_morphism x y) : comma_morphism x z :=
|
|
comma_morphism.mk
|
|
(mor1 g ∘ mor1 f)
|
|
(mor2 g ∘ mor2 f)
|
|
(by rewrite [+respect_comp,-assoc,coh,assoc,coh,-assoc])
|
|
|
|
local infix ` ∘∘ `:60 := comma_compose
|
|
|
|
definition comma_id : comma_morphism x x :=
|
|
comma_morphism.mk id id (by rewrite [+respect_id,id_left,id_right])
|
|
|
|
theorem comma_assoc (h : comma_morphism z w) (g : comma_morphism y z) (f : comma_morphism x y) :
|
|
h ∘∘ (g ∘∘ f) = (h ∘∘ g) ∘∘ f :=
|
|
comma_morphism_eq !assoc !assoc
|
|
|
|
theorem comma_id_left (f : comma_morphism x y) : comma_id ∘∘ f = f :=
|
|
comma_morphism_eq !id_left !id_left
|
|
|
|
theorem comma_id_right (f : comma_morphism x y) : f ∘∘ comma_id = f :=
|
|
comma_morphism_eq !id_right !id_right
|
|
|
|
variables (S T)
|
|
definition comma_category [constructor] : Precategory :=
|
|
precategory.MK (comma_object S T)
|
|
comma_morphism
|
|
(λa b, !is_trunc_comma_morphism)
|
|
(@comma_compose _ _ _ _ _)
|
|
(@comma_id _ _ _ _ _)
|
|
(@comma_assoc _ _ _ _ _)
|
|
(@comma_id_left _ _ _ _ _)
|
|
(@comma_id_right _ _ _ _ _)
|
|
|
|
--TODO: this definition doesn't use category structure of A and B
|
|
definition strict_precategory_comma [HA : strict_precategory A] [HB : strict_precategory B] :
|
|
strict_precategory (comma_object S T) :=
|
|
strict_precategory.mk (comma_category S T) !is_trunc_comma_object
|
|
|
|
/-
|
|
--set_option pp.notation false
|
|
definition is_univalent_comma (HA : is_univalent A) (HB : is_univalent B)
|
|
: is_univalent (comma_category S T) :=
|
|
begin
|
|
intros c d,
|
|
fapply adjointify,
|
|
{ intro i, cases i with f s, cases s with g l r, cases f with fA fB fp, cases g with gA gB gp,
|
|
esimp at *, fapply comma_object_eq,
|
|
{apply iso_of_eq⁻¹ᶠ, exact (iso.MK fA gA (ap mor1 l) (ap mor1 r))},
|
|
{apply iso_of_eq⁻¹ᶠ, exact (iso.MK fB gB (ap mor2 l) (ap mor2 r))},
|
|
{ apply sorry /-rewrite hom_of_eq_eq_of_iso,-/ }},
|
|
{ apply sorry},
|
|
{ apply sorry},
|
|
end
|
|
-/
|
|
|
|
end category
|