lean2/hott/algebra/category/constructions/discrete.hlean
Floris van Doorn e96e4a677d feat(homotopy): prove the naive Seifert-Van Kampen theorem
Also define the pushout of categories and the pushout of groupoids
2016-07-09 10:20:21 -07:00

72 lines
2.8 KiB
Text

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Discrete category
-/
import ..groupoid types.bool ..nat_trans
open eq is_trunc iso bool functor nat_trans
namespace category
definition precategory_of_1_type [constructor] (A : Type) [H : is_trunc 1 A] : precategory A :=
@precategory.mk _ _ (@is_trunc_eq _ _ H)
(λ (a b c : A) (p : b = c) (q : a = b), q ⬝ p)
(λ (a : A), refl a)
(λ (a b c d : A) (p : c = d) (q : b = c) (r : a = b), con.assoc r q p)
(λ (a b : A) (p : a = b), con_idp p)
(λ (a b : A) (p : a = b), idp_con p)
definition groupoid_of_1_type [constructor] (A : Type) [H : is_trunc 1 A] : groupoid A :=
groupoid.mk !precategory_of_1_type
(λ (a b : A) (p : a = b), is_iso.mk _ !con.right_inv !con.left_inv)
definition Precategory_of_1_type [constructor] (A : Type) [H : is_trunc 1 A] : Precategory :=
precategory.Mk (precategory_of_1_type A)
definition Groupoid_of_1_type [constructor] (A : Type) [H : is_trunc 1 A] : Groupoid :=
groupoid.Mk _ (groupoid_of_1_type A)
definition discrete_precategory [constructor] (A : Type) [H : is_set A] : precategory A :=
precategory_of_1_type A
definition discrete_groupoid [constructor] (A : Type) [H : is_set A] : groupoid A :=
groupoid_of_1_type A
definition Discrete_precategory [constructor] (A : Type) [H : is_set A] : Precategory :=
precategory.Mk (discrete_precategory A)
definition Discrete_groupoid [constructor] (A : Type) [H : is_set A] : Groupoid :=
groupoid.Mk _ (discrete_groupoid A)
definition c2 [constructor] : Precategory := Discrete_precategory bool
definition c2_functor [constructor] (C : Precategory) (x y : C) : c2 ⇒ C :=
functor.mk (bool.rec x y)
(bool.rec (bool.rec (λf, id) (by contradiction))
(bool.rec (by contradiction) (λf, id)))
abstract (bool.rec idp idp) end
abstract begin intro b₁ b₂ b₃ g f, induction b₁: induction b₂: induction b₃:
esimp at *: try contradiction: exact !id_id⁻¹ end end
definition c2_functor_eta {C : Precategory} (F : c2 ⇒ C) :
c2_functor C (to_fun_ob F ff) (to_fun_ob F tt) = F :=
begin
fapply functor_eq: esimp,
{ intro b, induction b: reflexivity},
{ intro b₁ b₂ p, induction p, induction b₁: esimp; rewrite [id_leftright]; exact !respect_id⁻¹}
end
definition c2_nat_trans [constructor] {C : Precategory} {x y u v : C} (f : x ⟶ u) (g : y ⟶ v) :
c2_functor C x y ⟹ c2_functor C u v :=
begin
fapply nat_trans.mk: esimp,
{ intro b, induction b, exact f, exact g},
{ intro b₁ b₂ p, induction p, induction b₁: esimp: apply id_comp_eq_comp_id},
end
end category