lean2/hott/algebra/category/constructions/initial.hlean
2016-02-22 11:15:38 -08:00

47 lines
1.3 KiB
Text

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Initial category
-/
import .indiscrete
open functor is_trunc eq
namespace category
definition initial_precategory [constructor] : precategory empty :=
indiscrete_precategory empty
definition Initial_precategory [constructor] : Precategory :=
precategory.Mk initial_precategory
notation 0 := Initial_precategory
definition zero_op : 0ᵒᵖ = 0 := idp
definition initial_functor [constructor] (C : Precategory) : 0 ⇒ C :=
functor.mk (λx, empty.elim x)
(λx y f, empty.elim x)
(λx, empty.elim x)
(λx y z g f, empty.elim x)
definition is_contr_initial_functor [instance] (C : Precategory) : is_contr (0 ⇒ C) :=
is_contr.mk (initial_functor C)
begin
intro F, fapply functor_eq,
{ intro x, exact empty.elim x},
{ intro x y f, exact empty.elim x}
end
definition initial_functor_op (C : Precategory)
: (initial_functor C)ᵒᵖᶠ = initial_functor Cᵒᵖ :=
by apply @is_prop.elim (0 ⇒ Cᵒᵖ)
definition initial_functor_comp {C D : Precategory} (F : C ⇒ D)
: F ∘f initial_functor C = initial_functor D :=
by apply @is_prop.elim (0 ⇒ D)
end category