lean2/hott/algebra/category/functor/basic.hlean

301 lines
14 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Jakob von Raumer
-/
import ..iso types.pi
open function category eq prod prod.ops equiv is_equiv sigma sigma.ops is_trunc funext iso pi
structure functor (C D : Precategory) : Type :=
(to_fun_ob : C → D)
(to_fun_hom : Π {a b : C}, hom a b → hom (to_fun_ob a) (to_fun_ob b))
(respect_id : Π (a : C), to_fun_hom (ID a) = ID (to_fun_ob a))
(respect_comp : Π {a b c : C} (g : hom b c) (f : hom a b),
to_fun_hom (g ∘ f) = to_fun_hom g ∘ to_fun_hom f)
namespace functor
infixl ` ⇒ `:55 := functor
variables {A B C D E : Precategory}
attribute to_fun_ob [coercion]
attribute to_fun_hom [coercion]
-- The following lemmas will later be used to prove that the type of
-- precategories forms a precategory itself
protected definition compose [reducible] [constructor] (G : functor D E) (F : functor C D)
: functor C E :=
functor.mk
(λ x, G (F x))
(λ a b f, G (F f))
(λ a, abstract calc
G (F (ID a)) = G (ID (F a)) : by rewrite respect_id
... = ID (G (F a)) : by rewrite respect_id end)
(λ a b c g f, abstract calc
G (F (g ∘ f)) = G (F g ∘ F f) : by rewrite respect_comp
... = G (F g) ∘ G (F f) : by rewrite respect_comp end)
infixr ` ∘f `:75 := functor.compose
protected definition id [reducible] [constructor] {C : Precategory} : functor C C :=
mk (λa, a) (λ a b f, f) (λ a, idp) (λ a b c f g, idp)
protected definition ID [reducible] [constructor] (C : Precategory) : functor C C := @functor.id C
notation 1 := functor.id
definition constant_functor [constructor] (C : Precategory) {D : Precategory} (d : D) : C ⇒ D :=
functor.mk (λc, d)
(λc c' f, id)
(λc, idp)
(λa b c g f, !id_id⁻¹)
/- introduction rule for equalities between functors -/
definition functor_mk_eq' {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)}
{H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂)
(pF : F₁ = F₂) (pH : pF ▸ H₁ = H₂)
: functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ :=
apdt01111 functor.mk pF pH !is_prop.elim !is_prop.elim
definition functor_eq' {F₁ F₂ : C ⇒ D} : Π(p : to_fun_ob F₁ = to_fun_ob F₂),
(transport (λx, Πa b f, hom (x a) (x b)) p @(to_fun_hom F₁) = @(to_fun_hom F₂)) → F₁ = F₂ :=
by induction F₁; induction F₂; apply functor_mk_eq'
definition functor_mk_eq {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)}
{H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂) (pF : F₁ ~ F₂)
(pH : Π(a b : C) (f : hom a b), hom_of_eq (pF b) ∘ H₁ a b f ∘ inv_of_eq (pF a) = H₂ a b f)
: functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ :=
begin
fapply functor_mk_eq',
{ exact eq_of_homotopy pF},
{ refine eq_of_homotopy (λc, eq_of_homotopy (λc', eq_of_homotopy (λf, _))), intros,
rewrite [+pi_transport_constant,-pH,-transport_hom]}
end
definition functor_eq {F₁ F₂ : C ⇒ D} : Π(p : to_fun_ob F₁ ~ to_fun_ob F₂),
(Π(a b : C) (f : hom a b), hom_of_eq (p b) ∘ F₁ f ∘ inv_of_eq (p a) = F₂ f) → F₁ = F₂ :=
by induction F₁; induction F₂; apply functor_mk_eq
definition functor_mk_eq_constant {F : C → D} {H₁ : Π(a b : C), hom a b → hom (F a) (F b)}
{H₂ : Π(a b : C), hom a b → hom (F a) (F b)} (id₁ id₂ comp₁ comp₂)
(pH : Π(a b : C) (f : hom a b), H₁ a b f = H₂ a b f)
: functor.mk F H₁ id₁ comp₁ = functor.mk F H₂ id₂ comp₂ :=
functor_eq (λc, idp) (λa b f, !id_leftright ⬝ !pH)
definition preserve_is_iso [constructor] (F : C ⇒ D) {a b : C} (f : hom a b) [H : is_iso f]
: is_iso (F f) :=
begin
fapply @is_iso.mk, apply (F (f⁻¹)),
repeat (apply concat ; symmetry ; apply (respect_comp F) ;
apply concat ; apply (ap (λ x, to_fun_hom F x)) ;
(apply iso.left_inverse | apply iso.right_inverse);
apply (respect_id F) ),
end
theorem respect_inv (F : C ⇒ D) {a b : C} (f : hom a b) [H : is_iso f] [H' : is_iso (F f)] :
F (f⁻¹) = (F f)⁻¹ :=
begin
fapply @left_inverse_eq_right_inverse, apply (F f),
transitivity to_fun_hom F (f⁻¹ ∘ f),
{symmetry, apply (respect_comp F)},
{transitivity to_fun_hom F category.id,
{congruence, apply iso.left_inverse},
{apply respect_id}},
apply iso.right_inverse
end
attribute preserve_is_iso [instance] [priority 100]
definition to_fun_iso [constructor] (F : C ⇒ D) {a b : C} (f : a ≅ b) : F a ≅ F b :=
iso.mk (F f) _
theorem respect_inv' (F : C ⇒ D) {a b : C} (f : hom a b) {H : is_iso f} : F (f⁻¹) = (F f)⁻¹ :=
respect_inv F f
theorem respect_refl (F : C ⇒ D) (a : C) : to_fun_iso F (iso.refl a) = iso.refl (F a) :=
iso_eq !respect_id
theorem respect_symm (F : C ⇒ D) {a b : C} (f : a ≅ b)
: to_fun_iso F f⁻¹ⁱ = (to_fun_iso F f)⁻¹ⁱ :=
iso_eq !respect_inv
theorem respect_trans (F : C ⇒ D) {a b c : C} (f : a ≅ b) (g : b ≅ c)
: to_fun_iso F (f ⬝i g) = to_fun_iso F f ⬝i to_fun_iso F g :=
iso_eq !respect_comp
definition respect_iso_of_eq (F : C ⇒ D) {a b : C} (p : a = b) :
to_fun_iso F (iso_of_eq p) = iso_of_eq (ap F p) :=
by induction p; apply respect_refl
theorem respect_hom_of_eq (F : C ⇒ D) {a b : C} (p : a = b) :
F (hom_of_eq p) = hom_of_eq (ap F p) :=
by induction p; apply respect_id
definition respect_inv_of_eq (F : C ⇒ D) {a b : C} (p : a = b) :
F (inv_of_eq p) = inv_of_eq (ap F p) :=
by induction p; apply respect_id
protected definition assoc (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) :
H ∘f (G ∘f F) = (H ∘f G) ∘f F :=
!functor_mk_eq_constant (λa b f, idp)
protected definition id_left (F : C ⇒ D) : 1 ∘f F = F :=
functor.rec_on F (λF1 F2 F3 F4, !functor_mk_eq_constant (λa b f, idp))
protected definition id_right (F : C ⇒ D) : F ∘f 1 = F :=
functor.rec_on F (λF1 F2 F3 F4, !functor_mk_eq_constant (λa b f, idp))
protected definition comp_id_eq_id_comp (F : C ⇒ D) : F ∘f 1 = 1 ∘f F :=
!functor.id_right ⬝ !functor.id_left⁻¹
definition functor_of_eq [constructor] {C D : Precategory} (p : C = D :> Precategory) : C ⇒ D :=
functor.mk (transport carrier p)
(λa b f, by induction p; exact f)
(by intro c; induction p; reflexivity)
(by intros; induction p; reflexivity)
protected definition sigma_char :
(Σ (to_fun_ob : C → D)
(to_fun_hom : Π ⦃a b : C⦄, hom a b → hom (to_fun_ob a) (to_fun_ob b)),
(Π (a : C), to_fun_hom (ID a) = ID (to_fun_ob a)) ×
(Π {a b c : C} (g : hom b c) (f : hom a b),
to_fun_hom (g ∘ f) = to_fun_hom g ∘ to_fun_hom f)) ≃ (functor C D) :=
begin
fapply equiv.MK,
{intro S, induction S with d1 S2, induction S2 with d2 P1, induction P1 with P11 P12,
exact functor.mk d1 d2 P11 @P12},
{intro F, induction F with d1 d2 d3 d4, exact ⟨d1, @d2, (d3, @d4)⟩},
{intro F, induction F, reflexivity},
{intro S, induction S with d1 S2, induction S2 with d2 P1, induction P1, reflexivity},
end
definition change_fun [constructor] (F : C ⇒ D) (Fob : C → D)
(Fhom : Π⦃c c' : C⦄ (f : c ⟶ c'), Fob c ⟶ Fob c') (p : F = Fob) (q : F =[p] Fhom) : C ⇒ D :=
functor.mk
Fob
Fhom
proof abstract λa, transporto (λFo (Fh : Π⦃c c'⦄, _), Fh (ID a) = ID (Fo a))
q (respect_id F a) end qed
proof abstract λa b c g f, transporto (λFo (Fh : Π⦃c c'⦄, _), Fh (g ∘ f) = Fh g ∘ Fh f)
q (respect_comp F g f) end qed
section
local attribute precategory.is_set_hom [instance] [priority 1001]
local attribute trunctype.struct [instance] [priority 1] -- remove after #842 is closed
protected theorem is_set_functor [instance]
[HD : is_set D] : is_set (functor C D) :=
by apply is_trunc_equiv_closed; apply functor.sigma_char
end
/- higher equalities in the functor type -/
definition functor_mk_eq'_idp (F : C → D) (H : Π(a b : C), hom a b → hom (F a) (F b))
(id comp) : functor_mk_eq' id id comp comp (idpath F) (idpath H) = idp :=
begin
fapply apd011 (apdt01111 functor.mk idp idp),
apply is_prop.elim,
apply is_prop.elimo
end
definition functor_eq'_idp (F : C ⇒ D) : functor_eq' idp idp = (idpath F) :=
by (cases F; apply functor_mk_eq'_idp)
definition functor_eq_eta' {F₁ F₂ : C ⇒ D} (p : F₁ = F₂)
: functor_eq' (ap to_fun_ob p) (!tr_compose⁻¹ ⬝ apdt to_fun_hom p) = p :=
begin
cases p, cases F₁,
refine _ ⬝ !functor_eq'_idp,
esimp
end
theorem functor_eq2' {F₁ F₂ : C ⇒ D} {p₁ p₂ : to_fun_ob F₁ = to_fun_ob F₂} (q₁ q₂)
(r : p₁ = p₂) : functor_eq' p₁ q₁ = functor_eq' p₂ q₂ :=
by cases r; apply (ap (functor_eq' p₂)); apply is_prop.elim
theorem functor_eq2 {F₁ F₂ : C ⇒ D} (p q : F₁ = F₂) (r : ap010 to_fun_ob p ~ ap010 to_fun_ob q)
: p = q :=
begin
cases F₁ with ob₁ hom₁ id₁ comp₁,
cases F₂ with ob₂ hom₂ id₂ comp₂,
rewrite [-functor_eq_eta' p, -functor_eq_eta' q],
apply functor_eq2',
apply ap_eq_ap_of_homotopy,
exact r,
end
theorem ap010_apd01111_functor {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)}
{H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} {id₁ id₂ comp₁ comp₂}
(pF : F₁ = F₂) (pH : pF ▸ H₁ = H₂) (pid : cast (apdt011 _ pF pH) id₁ = id₂)
(pcomp : cast (apdt0111 _ pF pH pid) comp₁ = comp₂) (c : C)
: ap010 to_fun_ob (apdt01111 functor.mk pF pH pid pcomp) c = ap10 pF c :=
by induction pF; induction pH; induction pid; induction pcomp; reflexivity
definition ap010_functor_eq {F₁ F₂ : C ⇒ D} (p : to_fun_ob F₁ ~ to_fun_ob F₂)
(q : (λ(a b : C) (f : hom a b), hom_of_eq (p b) ∘ F₁ f ∘ inv_of_eq (p a)) ~3 @(to_fun_hom F₂))
(c : C) : ap010 to_fun_ob (functor_eq p q) c = p c :=
begin
cases F₁ with F₁o F₁h F₁id F₁comp, cases F₂ with F₂o F₂h F₂id F₂comp,
esimp [functor_eq,functor_mk_eq,functor_mk_eq'],
rewrite [ap010_apd01111_functor,↑ap10,{apd10 (eq_of_homotopy p)}right_inv apd10]
end
definition ap010_functor_mk_eq_constant {F : C → D} {H₁ : Π(a b : C), hom a b → hom (F a) (F b)}
{H₂ : Π(a b : C), hom a b → hom (F a) (F b)} {id₁ id₂ comp₁ comp₂}
(pH : Π(a b : C) (f : hom a b), H₁ a b f = H₂ a b f) (c : C) :
ap010 to_fun_ob (functor_mk_eq_constant id₁ id₂ comp₁ comp₂ pH) c = idp :=
!ap010_functor_eq
definition ap010_assoc (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) (a : A) :
ap010 to_fun_ob (functor.assoc H G F) a = idp :=
by apply ap010_functor_mk_eq_constant
definition compose_pentagon (K : D ⇒ E) (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) :
(calc K ∘f H ∘f G ∘f F = (K ∘f H) ∘f G ∘f F : functor.assoc
... = ((K ∘f H) ∘f G) ∘f F : functor.assoc)
=
(calc K ∘f H ∘f G ∘f F = K ∘f (H ∘f G) ∘f F : ap (λx, K ∘f x) !functor.assoc
... = (K ∘f H ∘f G) ∘f F : functor.assoc
... = ((K ∘f H) ∘f G) ∘f F : ap (λx, x ∘f F) !functor.assoc) :=
begin
have lem1 : Π{F₁ F₂ : A ⇒ D} (p : F₁ = F₂) (a : A),
ap010 to_fun_ob (ap (λx, K ∘f x) p) a = ap (to_fun_ob K) (ap010 to_fun_ob p a),
by intros; cases p; esimp,
have lem2 : Π{F₁ F₂ : B ⇒ E} (p : F₁ = F₂) (a : A),
ap010 to_fun_ob (ap (λx, x ∘f F) p) a = ap010 to_fun_ob p (F a),
by intros; cases p; esimp,
apply functor_eq2,
intro a, esimp,
rewrite [+ap010_con,lem1,lem2,
ap010_assoc K H (G ∘f F) a,
ap010_assoc (K ∘f H) G F a,
ap010_assoc H G F a,
ap010_assoc K H G (F a),
ap010_assoc K (H ∘f G) F a],
end
definition hom_pathover_functor {c₁ c₂ : C} {p : c₁ = c₂} (F G : C ⇒ D)
{f₁ : F c₁ ⟶ G c₁} {f₂ : F c₂ ⟶ G c₂}
(q : to_fun_hom G (hom_of_eq p) ∘ f₁ = f₂ ∘ to_fun_hom F (hom_of_eq p)) : f₁ =[p] f₂ :=
hom_pathover (hom_whisker_right _ (respect_hom_of_eq G _)⁻¹ ⬝ q ⬝
hom_whisker_left _ (respect_hom_of_eq F _))
definition hom_pathover_constant_left_functor_right {c₁ c₂ : C} {p : c₁ = c₂} {d : D} (F : C ⇒ D)
{f₁ : d ⟶ F c₁} {f₂ : d ⟶ F c₂} (q : to_fun_hom F (hom_of_eq p) ∘ f₁ = f₂) : f₁ =[p] f₂ :=
hom_pathover_constant_left (hom_whisker_right _ (respect_hom_of_eq F _)⁻¹ ⬝ q)
definition hom_pathover_functor_left_constant_right {c₁ c₂ : C} {p : c₁ = c₂} {d : D} (F : C ⇒ D)
{f₁ : F c₁ ⟶ d} {f₂ : F c₂ ⟶ d} (q : f₁ = f₂ ∘ to_fun_hom F (hom_of_eq p)) : f₁ =[p] f₂ :=
hom_pathover_constant_right (q ⬝ hom_whisker_left _ (respect_hom_of_eq F _))
definition hom_pathover_id_left_functor_right {c₁ c₂ : C} {p : c₁ = c₂} (F : C ⇒ C)
{f₁ : c₁ ⟶ F c₁} {f₂ : c₂ ⟶ F c₂} (q : to_fun_hom F (hom_of_eq p) ∘ f₁ = f₂ ∘ hom_of_eq p) :
f₁ =[p] f₂ :=
hom_pathover_id_left (hom_whisker_right _ (respect_hom_of_eq F _)⁻¹ ⬝ q)
definition hom_pathover_functor_left_id_right {c₁ c₂ : C} {p : c₁ = c₂} (F : C ⇒ C)
{f₁ : F c₁ ⟶ c₁} {f₂ : F c₂ ⟶ c₂} (q : hom_of_eq p ∘ f₁ = f₂ ∘ to_fun_hom F (hom_of_eq p)) :
f₁ =[p] f₂ :=
hom_pathover_id_right (q ⬝ hom_whisker_left _ (respect_hom_of_eq F _))
end functor