332 lines
13 KiB
Text
332 lines
13 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
|
||
Colimits in a category
|
||
-/
|
||
|
||
import .limits ..constructions.opposite
|
||
|
||
open is_trunc functor nat_trans eq
|
||
|
||
-- we define colimits to be the dual of a limit
|
||
|
||
namespace category
|
||
|
||
variables {ob : Type} [C : precategory ob] {c c' : ob} (D I : Precategory)
|
||
include C
|
||
|
||
definition is_initial [reducible] (c : ob) := @is_terminal _ (opposite C) c
|
||
|
||
definition is_contr_of_is_initial (c d : ob) [H : is_initial d]
|
||
: is_contr (d ⟶ c) :=
|
||
H c
|
||
|
||
local attribute is_contr_of_is_initial [instance]
|
||
|
||
definition initial_morphism (c c' : ob) [H : is_initial c'] : c' ⟶ c :=
|
||
!center
|
||
|
||
definition hom_initial_eq [H : is_initial c'] (f f' : c' ⟶ c) : f = f' :=
|
||
!is_prop.elim
|
||
|
||
definition eq_initial_morphism [H : is_initial c'] (f : c' ⟶ c) : f = initial_morphism c c' :=
|
||
!is_prop.elim
|
||
|
||
definition initial_iso_initial {c c' : ob} (H : is_initial c) (K : is_initial c') : c ≅ c' :=
|
||
iso_of_opposite_iso (@terminal_iso_terminal _ (opposite C) _ _ H K)
|
||
|
||
theorem is_prop_is_initial [instance] : is_prop (is_initial c) := _
|
||
|
||
omit C
|
||
|
||
definition has_initial_object [reducible] : Type := has_terminal_object Dᵒᵖ
|
||
|
||
definition initial_object [unfold 2] [reducible] [H : has_initial_object D] : D :=
|
||
has_terminal_object.d Dᵒᵖ
|
||
|
||
definition has_initial_object.is_initial [H : has_initial_object D]
|
||
: is_initial (initial_object D) :=
|
||
@has_terminal_object.is_terminal (Opposite D) H
|
||
|
||
variable {D}
|
||
definition initial_object_iso_initial_object (H₁ H₂ : has_initial_object D)
|
||
: @initial_object D H₁ ≅ @initial_object D H₂ :=
|
||
initial_iso_initial (@has_initial_object.is_initial D H₁) (@has_initial_object.is_initial D H₂)
|
||
|
||
set_option pp.coercions true
|
||
theorem is_prop_has_initial_object [instance] (D : Category)
|
||
: is_prop (has_initial_object D) :=
|
||
is_prop_has_terminal_object (Category_opposite D)
|
||
|
||
variable (D)
|
||
abbreviation has_colimits_of_shape := has_limits_of_shape Dᵒᵖ Iᵒᵖ
|
||
|
||
/-
|
||
The next definitions states that a category is cocomplete with respect to diagrams
|
||
in a certain universe. "is_cocomplete.{o₁ h₁ o₂ h₂}" means that D is cocomplete
|
||
with respect to diagrams of type Precategory.{o₂ h₂}
|
||
-/
|
||
|
||
abbreviation is_cocomplete (D : Precategory) := is_complete Dᵒᵖ
|
||
|
||
definition has_colimits_of_shape_of_is_cocomplete [instance] [H : is_cocomplete D]
|
||
(I : Precategory) : has_colimits_of_shape D I := H Iᵒᵖ
|
||
|
||
section
|
||
open pi
|
||
theorem is_prop_has_colimits_of_shape [instance] (D : Category) (I : Precategory)
|
||
: is_prop (has_colimits_of_shape D I) :=
|
||
is_prop_has_limits_of_shape (Category_opposite D) _
|
||
|
||
theorem is_prop_is_cocomplete [instance] (D : Category) : is_prop (is_cocomplete D) :=
|
||
is_prop_is_complete (Category_opposite D)
|
||
end
|
||
|
||
variables {D I} (F : I ⇒ D) [H : has_colimits_of_shape D I] {i j : I}
|
||
include H
|
||
|
||
abbreviation cocone := (cone Fᵒᵖᶠ)ᵒᵖ
|
||
|
||
definition has_initial_object_cocone [H : has_colimits_of_shape D I]
|
||
(F : I ⇒ D) : has_initial_object (cocone F) :=
|
||
begin
|
||
unfold [has_colimits_of_shape,has_limits_of_shape] at H,
|
||
exact H Fᵒᵖᶠ
|
||
end
|
||
local attribute has_initial_object_cocone [instance]
|
||
|
||
definition colimit_cocone : cocone F := limit_cone Fᵒᵖᶠ
|
||
|
||
definition is_initial_colimit_cocone [instance] : is_initial (colimit_cocone F) :=
|
||
is_terminal_limit_cone Fᵒᵖᶠ
|
||
|
||
definition colimit_object : D :=
|
||
limit_object Fᵒᵖᶠ
|
||
|
||
definition colimit_nat_trans : constant_functor Iᵒᵖ (colimit_object F) ⟹ Fᵒᵖᶠ :=
|
||
limit_nat_trans Fᵒᵖᶠ
|
||
|
||
definition colimit_morphism (i : I) : F i ⟶ colimit_object F :=
|
||
limit_morphism Fᵒᵖᶠ i
|
||
|
||
variable {H}
|
||
theorem colimit_commute {i j : I} (f : i ⟶ j)
|
||
: colimit_morphism F j ∘ to_fun_hom F f = colimit_morphism F i :=
|
||
by rexact limit_commute Fᵒᵖᶠ f
|
||
|
||
variable [H]
|
||
definition colimit_cone_obj [constructor] {d : D} {η : Πi, F i ⟶ d}
|
||
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) : cone_obj Fᵒᵖᶠ :=
|
||
limit_cone_obj Fᵒᵖᶠ proof p qed
|
||
|
||
variable {H}
|
||
definition colimit_hom {d : D} (η : Πi, F i ⟶ d)
|
||
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) : colimit_object F ⟶ d :=
|
||
hom_limit Fᵒᵖᶠ η proof p qed
|
||
|
||
theorem colimit_hom_commute {d : D} (η : Πi, F i ⟶ d)
|
||
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) (i : I)
|
||
: colimit_hom F η p ∘ colimit_morphism F i = η i :=
|
||
by rexact hom_limit_commute Fᵒᵖᶠ η proof p qed i
|
||
|
||
definition colimit_cone_hom [constructor] {d : D} {η : Πi, F i ⟶ d}
|
||
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) {h : colimit_object F ⟶ d}
|
||
(q : Πi, h ∘ colimit_morphism F i = η i)
|
||
: cone_hom (colimit_cone_obj F p) (colimit_cocone F) :=
|
||
by rexact limit_cone_hom Fᵒᵖᶠ proof p qed proof q qed
|
||
|
||
variable {F}
|
||
theorem eq_colimit_hom {d : D} {η : Πi, F i ⟶ d}
|
||
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) {h : colimit_object F ⟶ d}
|
||
(q : Πi, h ∘ colimit_morphism F i = η i) : h = colimit_hom F η p :=
|
||
by rexact @eq_hom_limit _ _ Fᵒᵖᶠ _ _ _ proof p qed _ proof q qed
|
||
|
||
theorem colimit_cocone_unique {d : D} {η : Πi, F i ⟶ d}
|
||
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i)
|
||
{h₁ : colimit_object F ⟶ d} (q₁ : Πi, h₁ ∘ colimit_morphism F i = η i)
|
||
{h₂ : colimit_object F ⟶ d} (q₂ : Πi, h₂ ∘ colimit_morphism F i = η i) : h₁ = h₂ :=
|
||
@limit_cone_unique _ _ Fᵒᵖᶠ _ _ _ proof p qed _ proof q₁ qed _ proof q₂ qed
|
||
|
||
definition colimit_hom_colimit [reducible] {F G : I ⇒ D} (η : F ⟹ G)
|
||
: colimit_object F ⟶ colimit_object G :=
|
||
colimit_hom _ (λi, colimit_morphism G i ∘ η i)
|
||
abstract by intro i j f; rewrite [-assoc,-naturality,assoc,colimit_commute] end
|
||
|
||
omit H
|
||
|
||
variable (F)
|
||
definition colimit_object_iso_colimit_object [constructor] (H₁ H₂ : has_colimits_of_shape D I) :
|
||
@(colimit_object F) H₁ ≅ @(colimit_object F) H₂ :=
|
||
iso_of_opposite_iso (limit_object_iso_limit_object Fᵒᵖᶠ H₁ H₂)
|
||
|
||
definition colimit_functor [constructor] (D I : Precategory) [H : has_colimits_of_shape D I]
|
||
: D ^c I ⇒ D :=
|
||
(limit_functor Dᵒᵖ Iᵒᵖ ∘f opposite_functor_opposite_left D I)ᵒᵖ'
|
||
|
||
section bin_coproducts
|
||
open bool prod.ops
|
||
definition has_binary_coproducts [reducible] (D : Precategory) := has_colimits_of_shape D c2
|
||
variables [K : has_binary_coproducts D] (d d' : D)
|
||
include K
|
||
|
||
definition coproduct_object : D :=
|
||
colimit_object (c2_functor D d d')
|
||
|
||
infixr `+l`:27 := coproduct_object
|
||
local infixr + := coproduct_object
|
||
|
||
definition inl : d ⟶ d + d' :=
|
||
colimit_morphism (c2_functor D d d') ff
|
||
|
||
definition inr : d' ⟶ d + d' :=
|
||
colimit_morphism (c2_functor D d d') tt
|
||
|
||
variables {d d'}
|
||
definition coproduct_hom {x : D} (f : d ⟶ x) (g : d' ⟶ x) : d + d' ⟶ x :=
|
||
colimit_hom (c2_functor D d d') (bool.rec f g)
|
||
(by intro b₁ b₂ f; induction b₁: induction b₂: esimp at *; try contradiction: apply id_right)
|
||
|
||
theorem coproduct_hom_inl {x : D} (f : d ⟶ x) (g : d' ⟶ x) : coproduct_hom f g ∘ !inl = f :=
|
||
colimit_hom_commute (c2_functor D d d') (bool.rec f g) _ ff
|
||
|
||
theorem coproduct_hom_inr {x : D} (f : d ⟶ x) (g : d' ⟶ x) : coproduct_hom f g ∘ !inr = g :=
|
||
colimit_hom_commute (c2_functor D d d') (bool.rec f g) _ tt
|
||
|
||
theorem eq_coproduct_hom {x : D} {f : d ⟶ x} {g : d' ⟶ x} {h : d + d' ⟶ x}
|
||
(p : h ∘ !inl = f) (q : h ∘ !inr = g) : h = coproduct_hom f g :=
|
||
eq_colimit_hom _ (bool.rec p q)
|
||
|
||
theorem coproduct_cocone_unique {x : D} {f : d ⟶ x} {g : d' ⟶ x}
|
||
{h₁ : d + d' ⟶ x} (p₁ : h₁ ∘ !inl = f) (q₁ : h₁ ∘ !inr = g)
|
||
{h₂ : d + d' ⟶ x} (p₂ : h₂ ∘ !inl = f) (q₂ : h₂ ∘ !inr = g) : h₁ = h₂ :=
|
||
eq_coproduct_hom p₁ q₁ ⬝ (eq_coproduct_hom p₂ q₂)⁻¹
|
||
|
||
variable (D)
|
||
-- TODO: define this in terms of colimit_functor and functor_two_left (in exponential_laws)
|
||
definition coproduct_functor [constructor] : D ×c D ⇒ D :=
|
||
functor.mk
|
||
(λx, coproduct_object x.1 x.2)
|
||
(λx y f, coproduct_hom (!inl ∘ f.1) (!inr ∘ f.2))
|
||
abstract begin intro x, symmetry, apply eq_coproduct_hom: apply id_comp_eq_comp_id end end
|
||
abstract begin intro x y z g f, symmetry, apply eq_coproduct_hom,
|
||
rewrite [-assoc,coproduct_hom_inl,assoc,coproduct_hom_inl,-assoc],
|
||
rewrite [-assoc,coproduct_hom_inr,assoc,coproduct_hom_inr,-assoc] end end
|
||
omit K
|
||
variables {D} (d d')
|
||
|
||
definition coproduct_object_iso_coproduct_object [constructor] (H₁ H₂ : has_binary_coproducts D) :
|
||
@coproduct_object D H₁ d d' ≅ @coproduct_object D H₂ d d' :=
|
||
colimit_object_iso_colimit_object _ H₁ H₂
|
||
|
||
end bin_coproducts
|
||
|
||
/-
|
||
intentionally we define coproducts in terms of colimits,
|
||
but coequalizers in terms of equalizers, to see which characterization is more useful
|
||
-/
|
||
|
||
section coequalizers
|
||
open bool prod.ops sum equalizer_category_hom
|
||
|
||
definition has_coequalizers [reducible] (D : Precategory) := has_equalizers Dᵒᵖ
|
||
variables [K : has_coequalizers D]
|
||
include K
|
||
|
||
variables {d d' x : D} (f g : d ⟶ d')
|
||
definition coequalizer_object : D :=
|
||
!(@equalizer_object Dᵒᵖ) f g
|
||
|
||
definition coequalizer : d' ⟶ coequalizer_object f g :=
|
||
!(@equalizer Dᵒᵖ)
|
||
|
||
theorem coequalizes : coequalizer f g ∘ f = coequalizer f g ∘ g :=
|
||
by rexact !(@equalizes Dᵒᵖ)
|
||
|
||
variables {f g}
|
||
definition coequalizer_hom (h : d' ⟶ x) (p : h ∘ f = h ∘ g) : coequalizer_object f g ⟶ x :=
|
||
!(@hom_equalizer Dᵒᵖ) proof p qed
|
||
|
||
theorem coequalizer_hom_coequalizer (h : d' ⟶ x) (p : h ∘ f = h ∘ g)
|
||
: coequalizer_hom h p ∘ coequalizer f g = h :=
|
||
by rexact !(@equalizer_hom_equalizer Dᵒᵖ)
|
||
|
||
theorem eq_coequalizer_hom {h : d' ⟶ x} (p : h ∘ f = h ∘ g) {i : coequalizer_object f g ⟶ x}
|
||
(q : i ∘ coequalizer f g = h) : i = coequalizer_hom h p :=
|
||
by rexact !(@eq_hom_equalizer Dᵒᵖ) proof q qed
|
||
|
||
theorem coequalizer_cocone_unique {h : d' ⟶ x} (p : h ∘ f = h ∘ g)
|
||
{i₁ : coequalizer_object f g ⟶ x} (q₁ : i₁ ∘ coequalizer f g = h)
|
||
{i₂ : coequalizer_object f g ⟶ x} (q₂ : i₂ ∘ coequalizer f g = h) : i₁ = i₂ :=
|
||
!(@equalizer_cone_unique Dᵒᵖ) proof p qed proof q₁ qed proof q₂ qed
|
||
|
||
omit K
|
||
variables (f g)
|
||
definition coequalizer_object_iso_coequalizer_object [constructor] (H₁ H₂ : has_coequalizers D) :
|
||
@coequalizer_object D H₁ _ _ f g ≅ @coequalizer_object D H₂ _ _ f g :=
|
||
iso_of_opposite_iso !(@equalizer_object_iso_equalizer_object Dᵒᵖ)
|
||
|
||
end coequalizers
|
||
|
||
section pushouts
|
||
open bool prod.ops sum pullback_category_hom
|
||
|
||
definition has_pushouts [reducible] (D : Precategory) := has_pullbacks Dᵒᵖ
|
||
variables [K : has_pushouts D]
|
||
include K
|
||
|
||
variables {d₁ d₂ d₃ x : D} (f : d₁ ⟶ d₂) (g : d₁ ⟶ d₃)
|
||
definition pushout_object : D :=
|
||
!(@pullback_object Dᵒᵖ) f g
|
||
|
||
definition pushout : d₃ ⟶ pushout_object f g :=
|
||
!(@pullback Dᵒᵖ)
|
||
|
||
definition pushout_rev : d₂ ⟶ pushout_object f g :=
|
||
!(@pullback_rev Dᵒᵖ)
|
||
|
||
theorem pushout_commutes : pushout_rev f g ∘ f = pushout f g ∘ g :=
|
||
by rexact !(@pullback_commutes Dᵒᵖ)
|
||
|
||
variables {f g}
|
||
definition pushout_hom (h₁ : d₂ ⟶ x) (h₂ : d₃ ⟶ x) (p : h₁ ∘ f = h₂ ∘ g)
|
||
: pushout_object f g ⟶ x :=
|
||
!(@hom_pullback Dᵒᵖ) proof p qed
|
||
|
||
theorem pushout_hom_pushout (h₁ : d₂ ⟶ x) (h₂ : d₃ ⟶ x) (p : h₁ ∘ f = h₂ ∘ g)
|
||
: pushout_hom h₁ h₂ p ∘ pushout f g = h₂ :=
|
||
by rexact !(@pullback_hom_pullback Dᵒᵖ)
|
||
|
||
theorem pushout_hom_pushout_rev (h₁ : d₂ ⟶ x) (h₂ : d₃ ⟶ x) (p : h₁ ∘ f = h₂ ∘ g)
|
||
: pushout_hom h₁ h₂ p ∘ pushout_rev f g = h₁ :=
|
||
by rexact !(@pullback_rev_hom_pullback Dᵒᵖ)
|
||
|
||
theorem eq_pushout_hom {h₁ : d₂ ⟶ x} {h₂ : d₃ ⟶ x} (p : h₁ ∘ f = h₂ ∘ g)
|
||
{i : pushout_object f g ⟶ x} (q : i ∘ pushout f g = h₂) (r : i ∘ pushout_rev f g = h₁)
|
||
: i = pushout_hom h₁ h₂ p :=
|
||
by rexact !(@eq_hom_pullback Dᵒᵖ) proof q qed proof r qed
|
||
|
||
theorem pushout_cocone_unique {h₁ : d₂ ⟶ x} {h₂ : d₃ ⟶ x} (p : h₁ ∘ f = h₂ ∘ g)
|
||
{i₁ : pushout_object f g ⟶ x} (q₁ : i₁ ∘ pushout f g = h₂) (r₁ : i₁ ∘ pushout_rev f g = h₁)
|
||
{i₂ : pushout_object f g ⟶ x} (q₂ : i₂ ∘ pushout f g = h₂) (r₂ : i₂ ∘ pushout_rev f g = h₁)
|
||
: i₁ = i₂ :=
|
||
!(@pullback_cone_unique Dᵒᵖ) proof p qed proof q₁ qed proof r₁ qed proof q₂ qed proof r₂ qed
|
||
|
||
omit K
|
||
variables (f g)
|
||
definition pushout_object_iso_pushout_object [constructor] (H₁ H₂ : has_pushouts D) :
|
||
@pushout_object D H₁ _ _ _ f g ≅ @pushout_object D H₂ _ _ _ f g :=
|
||
iso_of_opposite_iso !(@pullback_object_iso_pullback_object (Opposite D))
|
||
|
||
end pushouts
|
||
|
||
definition has_limits_of_shape_op_op [H : has_limits_of_shape D Iᵒᵖᵒᵖ]
|
||
: has_limits_of_shape D I :=
|
||
by induction I with I Is; induction Is; exact H
|
||
|
||
namespace ops
|
||
infixr + := coproduct_object
|
||
end ops
|
||
|
||
end category
|