lean2/library/data/real/basic.lean

1113 lines
38 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Robert Y. Lewis
The real numbers, constructed as equivalence classes of Cauchy sequences of rationals.
This construction follows Bishop and Bridges (1985).
To do:
o Rename things and possibly make theorems private
-/
import data.nat data.rat.order data.pnat
open nat eq eq.ops pnat
open -[coercions] rat
local notation 0 := rat.of_num 0
local notation 1 := rat.of_num 1
----------------------------------------------------------------------------------------------------
-- small helper lemmas
theorem s_mul_assoc_lemma_3 (a b n : +) (p : ) :
p * ((a * n)⁻¹ + (b * n)⁻¹) = p * (a⁻¹ + b⁻¹) * n⁻¹ :=
by rewrite [rat.mul.assoc, rat.right_distrib, *inv_mul_eq_mul_inv]
theorem s_mul_assoc_lemma_4 {n : +} {ε q : } (Hε : ε > 0) (Hq : q > 0) (H : n ≥ pceil (q / ε)) :
q * n⁻¹ ≤ ε :=
begin
let H2 := pceil_helper H (div_pos_of_pos_of_pos Hq Hε),
let H3 := mul_le_of_le_div (div_pos_of_pos_of_pos Hq Hε) H2,
rewrite -(one_mul ε),
apply mul_le_mul_of_mul_div_le,
repeat assumption
end
theorem find_thirds (a b : ) (H : b > 0) : ∃ n : +, a + n⁻¹ + n⁻¹ + n⁻¹ < a + b :=
let n := pceil (of_nat 4 / b) in
have of_nat 3 * n⁻¹ < b, from calc
of_nat 3 * n⁻¹ < of_nat 4 * n⁻¹
: rat.mul_lt_mul_of_pos_right dec_trivial !inv_pos
... ≤ of_nat 4 * (b / of_nat 4)
: rat.mul_le_mul_of_nonneg_left (!inv_pceil_div dec_trivial H) !of_nat_nonneg
... = b / of_nat 4 * of_nat 4 : rat.mul.comm
... = b : rat.div_mul_cancel dec_trivial,
exists.intro n (calc
a + n⁻¹ + n⁻¹ + n⁻¹ = a + (1 + 1 + 1) * n⁻¹ : by rewrite[*rat.right_distrib,*rat.one_mul,-*rat.add.assoc]
... = a + of_nat 3 * n⁻¹ : {show 1+1+1=of_nat 3, from dec_trivial}
... < a + b : rat.add_lt_add_left this a)
theorem squeeze {a b : } (H : ∀ j : +, a ≤ b + j⁻¹ + j⁻¹ + j⁻¹) : a ≤ b :=
begin
apply rat.le_of_not_gt,
intro Hb,
cases exists_add_lt_and_pos_of_lt Hb with [c, Hc],
cases find_thirds b c (and.right Hc) with [j, Hbj],
have Ha : a > b + j⁻¹ + j⁻¹ + j⁻¹, from lt.trans Hbj (and.left Hc),
apply (not_le_of_gt Ha) !H
end
theorem squeeze_2 {a b : } (H : ∀ ε : , ε > 0 → a ≥ b - ε) : a ≥ b :=
begin
apply rat.le_of_not_gt,
intro Hb,
cases exists_add_lt_and_pos_of_lt Hb with [c, Hc],
let Hc' := H c (and.right Hc),
apply (rat.not_le_of_gt (and.left Hc)) (iff.mpr !le_add_iff_sub_right_le Hc')
end
theorem rewrite_helper (a b c d : ) : a * b - c * d = a * (b - d) + (a - c) * d :=
by rewrite[rat.mul_sub_left_distrib, rat.mul_sub_right_distrib, add_sub, rat.sub_add_cancel]
theorem rewrite_helper3 (a b c d e f g: ) : a * (b + c) - (d * e + f * g) =
(a * b - d * e) + (a * c - f * g) :=
by rewrite[rat.mul.left_distrib, add_sub_comm]
theorem rewrite_helper4 (a b c d : ) : a * b - c * d = (a * b - a * d) + (a * d - c * d) :=
by rewrite[add_sub, rat.sub_add_cancel]
theorem rewrite_helper5 (a b x y : ) : a - b = (a - x) + (x - y) + (y - b) :=
by rewrite[*add_sub, *rat.sub_add_cancel]
theorem rewrite_helper7 (a b c d x : ) :
a * b * c - d = (b * c) * (a - x) + (x * b * c - d) :=
by rewrite[rat.mul_sub_left_distrib, add_sub]; exact (calc
a * b * c - d = a * b * c - x * b * c + x * b * c - d : rat.sub_add_cancel
... = b * c * a - b * c * x + x * b * c - d :
have ∀ {a b c : }, a * b * c = b * c * a, from
λa b c, !rat.mul.comm ▸ !rat.mul.right_comm,
this ▸ this ▸ rfl)
theorem ineq_helper (a b : ) (k m n : +) (H : a ≤ (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹)
(H2 : b ≤ (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹) :
(rat_of_pnat k) * a + b * (rat_of_pnat k) ≤ m⁻¹ + n⁻¹ :=
have (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹ = (2 * k)⁻¹ * (m⁻¹ + n⁻¹),
by rewrite[rat.mul.left_distrib,*inv_mul_eq_mul_inv]; exact !rat.mul.comm ▸ rfl,
have a + b ≤ k⁻¹ * (m⁻¹ + n⁻¹), from calc
a + b ≤ (2 * k)⁻¹ * (m⁻¹ + n⁻¹) + (2 * k)⁻¹ * (m⁻¹ + n⁻¹) : rat.add_le_add (this ▸ H) (this ▸ H2)
... = ((2 * k)⁻¹ + (2 * k)⁻¹) * (m⁻¹ + n⁻¹) : rat.mul.right_distrib
... = k⁻¹ * (m⁻¹ + n⁻¹) : (pnat.add_halves k) ▸ rfl,
calc (rat_of_pnat k) * a + b * (rat_of_pnat k)
= (rat_of_pnat k) * a + (rat_of_pnat k) * b : rat.mul.comm
... = (rat_of_pnat k) * (a + b) : rat.left_distrib
... ≤ (rat_of_pnat k) * (k⁻¹ * (m⁻¹ + n⁻¹)) :
iff.mp (!rat.le_iff_mul_le_mul_left !rat_of_pnat_is_pos) this
... = m⁻¹ + n⁻¹ : by rewrite[-rat.mul.assoc, inv_cancel_left, rat.one_mul]
theorem factor_lemma (a b c d e : ) : abs (a + b + c - (d + (b + e))) = abs ((a - d) + (c - e)) :=
!congr_arg (calc
a + b + c - (d + (b + e)) = a + b + c - (d + b + e) : rat.add.assoc
... = a + b - (d + b) + (c - e) : add_sub_comm
... = a + b - b - d + (c - e) : sub_add_eq_sub_sub_swap
... = a - d + (c - e) : rat.add_sub_cancel)
theorem factor_lemma_2 (a b c d : ) : (a + b) + (c + d) = (a + c) + (d + b) :=
!rat.add.comm ▸ (binary.comm4 rat.add.comm rat.add.assoc a b c d)
--------------------------------------
-- define cauchy sequences and equivalence. show equivalence actually is one
namespace s
notation `seq` := + →
definition regular (s : seq) := ∀ m n : +, abs (s m - s n) ≤ m⁻¹ + n⁻¹
definition equiv (s t : seq) := ∀ n : +, abs (s n - t n) ≤ n⁻¹ + n⁻¹
infix `≡` := equiv
theorem equiv.refl (s : seq) : s ≡ s :=
begin
intros,
rewrite [rat.sub_self, abs_zero],
apply add_invs_nonneg
end
theorem equiv.symm (s t : seq) (H : s ≡ t) : t ≡ s :=
begin
intros,
rewrite [-abs_neg, neg_sub],
exact H n
end
theorem bdd_of_eq {s t : seq} (H : s ≡ t) :
∀ j : +, ∀ n : +, n ≥ 2 * j → abs (s n - t n) ≤ j⁻¹ :=
begin
intros [j, n, Hn],
apply rat.le.trans,
apply H,
rewrite -(add_halves j),
apply rat.add_le_add,
apply inv_ge_of_le Hn,
apply inv_ge_of_le Hn
end
theorem eq_of_bdd {s t : seq} (Hs : regular s) (Ht : regular t)
(H : ∀ j : +, ∃ Nj : +, ∀ n : +, Nj ≤ n → abs (s n - t n) ≤ j⁻¹) : s ≡ t :=
begin
intros,
have Hj : (∀ j : +, abs (s n - t n) ≤ n⁻¹ + n⁻¹ + j⁻¹ + j⁻¹ + j⁻¹), begin
intros,
cases H j with [Nj, HNj],
rewrite [-(rat.sub_add_cancel (s n) (s (max j Nj))), rat.add.assoc (s n + -s (max j Nj)),
↑regular at *],
apply rat.le.trans,
apply abs_add_le_abs_add_abs,
apply rat.le.trans,
apply rat.add_le_add,
apply Hs,
rewrite [-(rat.sub_add_cancel (s (max j Nj)) (t (max j Nj))), rat.add.assoc],
apply abs_add_le_abs_add_abs,
apply rat.le.trans,
apply rat.add_le_add_left,
apply rat.add_le_add,
apply HNj (max j Nj) (max_right j Nj),
apply Ht,
have hsimp : ∀ m : +, n⁻¹ + m⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) = n⁻¹ + n⁻¹ + j⁻¹ + (m⁻¹ + m⁻¹),
from λm, calc
n⁻¹ + m⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) = n⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) + m⁻¹ : rat.add.right_comm
... = n⁻¹ + (j⁻¹ + m⁻¹ + n⁻¹) + m⁻¹ : rat.add.assoc
... = n⁻¹ + (n⁻¹ + (j⁻¹ + m⁻¹)) + m⁻¹ : rat.add.comm
... = n⁻¹ + n⁻¹ + j⁻¹ + (m⁻¹ + m⁻¹) : by rewrite[-*rat.add.assoc],
rewrite hsimp,
have Hms : (max j Nj)⁻¹ + (max j Nj)⁻¹ ≤ j⁻¹ + j⁻¹, begin
apply rat.add_le_add,
apply inv_ge_of_le (max_left j Nj),
apply inv_ge_of_le (max_left j Nj),
end,
apply (calc
n⁻¹ + n⁻¹ + j⁻¹ + ((max j Nj)⁻¹ + (max j Nj)⁻¹) ≤ n⁻¹ + n⁻¹ + j⁻¹ + (j⁻¹ + j⁻¹) :
rat.add_le_add_left Hms
... = n⁻¹ + n⁻¹ + j⁻¹ + j⁻¹ + j⁻¹ : by rewrite *rat.add.assoc)
end,
apply squeeze Hj
end
theorem eq_of_bdd_var {s t : seq} (Hs : regular s) (Ht : regular t)
(H : ∀ ε : , ε > 0 → ∃ Nj : +, ∀ n : +, Nj ≤ n → abs (s n - t n) ≤ ε) : s ≡ t :=
begin
apply eq_of_bdd,
repeat assumption,
intros,
apply H,
apply inv_pos
end
theorem pnat_bound {ε : } (Hε : ε > 0) : ∃ p : +, p⁻¹ ≤ ε :=
begin
existsi (pceil (1 / ε)),
rewrite -(rat.div_div (rat.ne_of_gt Hε)) at {2},
apply pceil_helper,
apply le.refl,
apply one_div_pos_of_pos Hε
end
theorem bdd_of_eq_var {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) :
∀ ε : , ε > 0 → ∃ Nj : +, ∀ n : +, Nj ≤ n → abs (s n - t n) ≤ ε :=
begin
intro ε Hε,
cases pnat_bound Hε with [N, HN],
existsi 2 * N,
intro n Hn,
apply rat.le.trans,
apply bdd_of_eq Heq N n Hn,
assumption
end
theorem equiv.trans (s t u : seq) (Hs : regular s) (Ht : regular t) (Hu : regular u)
(H : s ≡ t) (H2 : t ≡ u) : s ≡ u :=
begin
apply eq_of_bdd Hs Hu,
intros,
existsi 2 * (2 * j),
intro n Hn,
rewrite [-rat.sub_add_cancel (s n) (t n), rat.add.assoc],
apply rat.le.trans,
apply abs_add_le_abs_add_abs,
have Hst : abs (s n - t n) ≤ (2 * j)⁻¹, from bdd_of_eq H _ _ Hn,
have Htu : abs (t n - u n) ≤ (2 * j)⁻¹, from bdd_of_eq H2 _ _ Hn,
rewrite -(add_halves j),
apply rat.add_le_add,
repeat assumption
end
-----------------------------------
-- define operations on cauchy sequences. show operations preserve regularity
definition K (s : seq) : + := pnat.pos (ubound (abs (s pone)) + 1 + 1) dec_trivial
theorem canon_bound {s : seq} (Hs : regular s) (n : +) : abs (s n) ≤ rat_of_pnat (K s) :=
calc
abs (s n) = abs (s n - s pone + s pone) : by rewrite rat.sub_add_cancel
... ≤ abs (s n - s pone) + abs (s pone) : abs_add_le_abs_add_abs
... ≤ n⁻¹ + pone⁻¹ + abs (s pone) : rat.add_le_add_right !Hs
... = n⁻¹ + (1 + abs (s pone)) : by rewrite [pone_inv, rat.add.assoc]
... ≤ 1 + (1 + abs (s pone)) : rat.add_le_add_right (inv_le_one n)
... = abs (s pone) + (1 + 1) :
by rewrite [add.comm 1 (abs (s pone)), rat.add.comm 1, rat.add.assoc]
... ≤ of_nat (ubound (abs (s pone))) + (1 + 1) : rat.add_le_add_right (!ubound_ge)
... = of_nat (ubound (abs (s pone)) + (1 + 1)) : of_nat_add
... = of_nat (ubound (abs (s pone)) + 1 + 1) : nat.add.assoc
... = rat_of_pnat (K s) : by esimp
theorem bdd_of_regular {s : seq} (H : regular s) : ∃ b : , ∀ n : +, s n ≤ b :=
begin
existsi rat_of_pnat (K s),
intros,
apply rat.le.trans,
apply le_abs_self,
apply canon_bound H
end
theorem bdd_of_regular_strict {s : seq} (H : regular s) : ∃ b : , ∀ n : +, s n < b :=
begin
cases bdd_of_regular H with [b, Hb],
existsi b + 1,
intro n,
apply rat.lt_of_le_of_lt,
apply Hb,
apply rat.lt_add_of_pos_right,
apply rat.zero_lt_one
end
definition K₂ (s t : seq) := max (K s) (K t)
theorem K₂_symm (s t : seq) : K₂ s t = K₂ t s :=
if H : K s < K t then
(assert H1 : K₂ s t = K t, from max_eq_right H,
assert H2 : K₂ t s = K t, from max_eq_left (not_lt_of_ge (le_of_lt H)),
by rewrite [H1, -H2])
else
(assert H1 : K₂ s t = K s, from max_eq_left H,
if J : K t < K s then
(assert H2 : K₂ t s = K s, from max_eq_right J, by rewrite [H1, -H2])
else
(assert Heq : K t = K s, from
eq_of_le_of_ge (le_of_not_gt H) (le_of_not_gt J),
by rewrite [↑K₂, Heq]))
theorem canon_2_bound_left (s t : seq) (Hs : regular s) (n : +) :
abs (s n) ≤ rat_of_pnat (K₂ s t) :=
calc
abs (s n) ≤ rat_of_pnat (K s) : canon_bound Hs n
... ≤ rat_of_pnat (K₂ s t) : rat_of_pnat_le_of_pnat_le (!max_left)
theorem canon_2_bound_right (s t : seq) (Ht : regular t) (n : +) :
abs (t n) ≤ rat_of_pnat (K₂ s t) :=
calc
abs (t n) ≤ rat_of_pnat (K t) : canon_bound Ht n
... ≤ rat_of_pnat (K₂ s t) : rat_of_pnat_le_of_pnat_le (!max_right)
definition sadd (s t : seq) : seq := λ n, (s (2 * n)) + (t (2 * n))
theorem reg_add_reg {s t : seq} (Hs : regular s) (Ht : regular t) : regular (sadd s t) :=
begin
rewrite [↑regular at *, ↑sadd],
intros,
rewrite add_sub_comm,
apply rat.le.trans,
apply abs_add_le_abs_add_abs,
rewrite add_halves_double,
apply rat.add_le_add,
apply Hs,
apply Ht
end
definition smul (s t : seq) : seq := λ n : +, (s ((K₂ s t) * 2 * n)) * (t ((K₂ s t) * 2 * n))
theorem reg_mul_reg {s t : seq} (Hs : regular s) (Ht : regular t) : regular (smul s t) :=
begin
rewrite [↑regular at *, ↑smul],
intros,
rewrite rewrite_helper,
apply rat.le.trans,
apply abs_add_le_abs_add_abs,
apply rat.le.trans,
apply rat.add_le_add,
rewrite abs_mul,
apply rat.mul_le_mul_of_nonneg_right,
apply canon_2_bound_left s t Hs,
apply abs_nonneg,
rewrite abs_mul,
apply rat.mul_le_mul_of_nonneg_left,
apply canon_2_bound_right s t Ht,
apply abs_nonneg,
apply ineq_helper,
apply Ht,
apply Hs
end
definition sneg (s : seq) : seq := λ n : +, - (s n)
theorem reg_neg_reg {s : seq} (Hs : regular s) : regular (sneg s) :=
begin
rewrite [↑regular at *, ↑sneg],
intros,
rewrite [-abs_neg, neg_sub, sub_neg_eq_add, rat.add.comm],
apply Hs
end
-----------------------------------
-- show properties of +, *, -
definition zero : seq := λ n, 0
definition one : seq := λ n, 1
theorem s_add_comm (s t : seq) : sadd s t ≡ sadd t s :=
begin
esimp [sadd],
intro n,
rewrite [sub_add_eq_sub_sub, rat.add_sub_cancel, rat.sub_self, abs_zero],
apply add_invs_nonneg
end
theorem s_add_assoc (s t u : seq) (Hs : regular s) (Hu : regular u) :
sadd (sadd s t) u ≡ sadd s (sadd t u) :=
begin
rewrite [↑sadd, ↑equiv, ↑regular at *],
intros,
rewrite factor_lemma,
apply rat.le.trans,
apply abs_add_le_abs_add_abs,
apply rat.le.trans,
rotate 1,
apply rat.add_le_add_right,
apply inv_two_mul_le_inv,
rewrite [-(add_halves (2 * n)), -(add_halves n), factor_lemma_2],
apply rat.add_le_add,
apply Hs,
apply Hu
end
theorem s_mul_comm (s t : seq) : smul s t ≡ smul t s :=
begin
rewrite ↑smul,
intros n,
rewrite [*(K₂_symm s t), rat.mul.comm, rat.sub_self, abs_zero],
apply add_invs_nonneg
end
definition DK (s t : seq) := (K₂ s t) * 2
theorem DK_rewrite (s t : seq) : (K₂ s t) * 2 = DK s t := rfl
definition TK (s t u : seq) := (DK (λ (n : +), s (mul (DK s t) n) * t (mul (DK s t) n)) u)
theorem TK_rewrite (s t u : seq) :
(DK (λ (n : +), s (mul (DK s t) n) * t (mul (DK s t) n)) u) = TK s t u := rfl
theorem s_mul_assoc_lemma (s t u : seq) (a b c d : +) :
abs (s a * t a * u b - s c * t d * u d) ≤ abs (t a) * abs (u b) * abs (s a - s c) +
abs (s c) * abs (t a) * abs (u b - u d) + abs (s c) * abs (u d) * abs (t a - t d) :=
begin
rewrite (rewrite_helper7 _ _ _ _ (s c)),
apply rat.le.trans,
apply abs_add_le_abs_add_abs,
rewrite rat.add.assoc,
apply rat.add_le_add,
rewrite 2 abs_mul,
apply rat.le.refl,
rewrite [*rat.mul.assoc, -rat.mul_sub_left_distrib, -rat.left_distrib, abs_mul],
apply rat.mul_le_mul_of_nonneg_left,
rewrite rewrite_helper,
apply rat.le.trans,
apply abs_add_le_abs_add_abs,
apply rat.add_le_add,
rewrite abs_mul, apply rat.le.refl,
rewrite [abs_mul, rat.mul.comm], apply rat.le.refl,
apply abs_nonneg
end
definition Kq (s : seq) := rat_of_pnat (K s) + 1
theorem Kq_bound {s : seq} (H : regular s) : ∀ n, abs (s n) ≤ Kq s :=
begin
intros,
apply rat.le_of_lt,
apply rat.lt_of_le_of_lt,
apply canon_bound H,
apply rat.lt_add_of_pos_right,
apply rat.zero_lt_one
end
theorem Kq_bound_nonneg {s : seq} (H : regular s) : 0 ≤ Kq s :=
rat.le.trans !abs_nonneg (Kq_bound H 2)
theorem Kq_bound_pos {s : seq} (H : regular s) : 0 < Kq s :=
have H1 : 0 ≤ rat_of_pnat (K s), from rat.le.trans (!abs_nonneg) (canon_bound H 2),
add_pos_of_nonneg_of_pos H1 rat.zero_lt_one
theorem s_mul_assoc_lemma_5 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(a b c : +) : abs (t a) * abs (u b) * abs (s a - s c) ≤ (Kq t) * (Kq u) * (a⁻¹ + c⁻¹) :=
begin
repeat apply rat.mul_le_mul,
apply Kq_bound Ht,
apply Kq_bound Hu,
apply abs_nonneg,
apply Kq_bound_nonneg Ht,
apply Hs,
apply abs_nonneg,
apply rat.mul_nonneg,
apply Kq_bound_nonneg Ht,
apply Kq_bound_nonneg Hu,
end
theorem s_mul_assoc_lemma_2 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(a b c d : +) :
abs (t a) * abs (u b) * abs (s a - s c) + abs (s c) * abs (t a) * abs (u b - u d)
+ abs (s c) * abs (u d) * abs (t a - t d) ≤
(Kq t) * (Kq u) * (a⁻¹ + c⁻¹) + (Kq s) * (Kq t) * (b⁻¹ + d⁻¹) + (Kq s) * (Kq u) * (a⁻¹ + d⁻¹) :=
begin
apply add_le_add_three,
repeat (assumption | apply rat.mul_le_mul | apply Kq_bound | apply Kq_bound_nonneg |
apply abs_nonneg),
apply Hs,
apply abs_nonneg,
apply rat.mul_nonneg,
repeat (assumption | apply rat.mul_le_mul | apply Kq_bound | apply Kq_bound_nonneg |
apply abs_nonneg),
apply Hu,
apply abs_nonneg,
apply rat.mul_nonneg,
repeat (assumption | apply rat.mul_le_mul | apply Kq_bound | apply Kq_bound_nonneg |
apply abs_nonneg),
apply Ht,
apply abs_nonneg,
apply rat.mul_nonneg,
repeat (apply Kq_bound_nonneg; assumption)
end
theorem s_mul_assoc {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) :
smul (smul s t) u ≡ smul s (smul t u) :=
begin
apply eq_of_bdd_var,
repeat apply reg_mul_reg,
apply Hs,
apply Ht,
apply Hu,
apply reg_mul_reg Hs,
apply reg_mul_reg Ht Hu,
intros,
apply exists.intro,
intros,
rewrite [↑smul, *DK_rewrite, *TK_rewrite, -*pnat.mul.assoc, -*rat.mul.assoc],
apply rat.le.trans,
apply s_mul_assoc_lemma,
apply rat.le.trans,
apply s_mul_assoc_lemma_2,
apply Hs,
apply Ht,
apply Hu,
rewrite [*s_mul_assoc_lemma_3, -rat.distrib_three_right],
apply s_mul_assoc_lemma_4,
apply a,
repeat apply rat.add_pos,
repeat apply rat.mul_pos,
apply Kq_bound_pos Ht,
apply Kq_bound_pos Hu,
apply rat.add_pos,
repeat apply inv_pos,
repeat apply rat.mul_pos,
apply Kq_bound_pos Hs,
apply Kq_bound_pos Ht,
apply rat.add_pos,
repeat apply inv_pos,
repeat apply rat.mul_pos,
apply Kq_bound_pos Hs,
apply Kq_bound_pos Hu,
apply rat.add_pos,
repeat apply inv_pos,
apply a_1
end
theorem zero_is_reg : regular zero :=
begin
rewrite [↑regular, ↑zero],
intros,
rewrite [rat.sub_zero, abs_zero],
apply add_invs_nonneg
end
theorem s_zero_add (s : seq) (H : regular s) : sadd zero s ≡ s :=
begin
rewrite [↑sadd, ↑zero, ↑equiv, ↑regular at H],
intros,
rewrite [rat.zero_add],
apply rat.le.trans,
apply H,
apply rat.add_le_add,
apply inv_two_mul_le_inv,
apply rat.le.refl
end
theorem s_add_zero (s : seq) (H : regular s) : sadd s zero ≡ s :=
begin
rewrite [↑sadd, ↑zero, ↑equiv, ↑regular at H],
intros,
rewrite [rat.add_zero],
apply rat.le.trans,
apply H,
apply rat.add_le_add,
apply inv_two_mul_le_inv,
apply rat.le.refl
end
theorem s_neg_cancel (s : seq) (H : regular s) : sadd (sneg s) s ≡ zero :=
begin
rewrite [↑sadd, ↑sneg, ↑regular at H, ↑zero, ↑equiv],
intros,
rewrite [neg_add_eq_sub, rat.sub_self, rat.sub_zero, abs_zero],
apply add_invs_nonneg
end
theorem neg_s_cancel (s : seq) (H : regular s) : sadd s (sneg s) ≡ zero :=
begin
apply equiv.trans,
rotate 3,
apply s_add_comm,
apply s_neg_cancel s H,
repeat (apply reg_add_reg | apply reg_neg_reg | assumption),
apply zero_is_reg
end
theorem add_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Hv : regular v) (Esu : s ≡ u) (Etv : t ≡ v) : sadd s t ≡ sadd u v :=
begin
rewrite [↑sadd, ↑equiv at *],
intros,
rewrite [add_sub_comm, add_halves_double],
apply rat.le.trans,
apply abs_add_le_abs_add_abs,
apply rat.add_le_add,
apply Esu,
apply Etv
end
set_option tactic.goal_names false
theorem mul_bound_helper {s t : seq} (Hs : regular s) (Ht : regular t) (a b c : +) (j : +) :
∃ N : +, ∀ n : +, n ≥ N → abs (s (a * n) * t (b * n) - s (c * n) * t (c * n)) ≤ j⁻¹ :=
begin
existsi pceil (((rat_of_pnat (K s)) * (b⁻¹ + c⁻¹) + (a⁻¹ + c⁻¹) *
(rat_of_pnat (K t))) * (rat_of_pnat j)),
intros n Hn,
rewrite rewrite_helper4,
apply rat.le.trans,
apply abs_add_le_abs_add_abs,
apply rat.le.trans,
rotate 1,
show n⁻¹ * ((rat_of_pnat (K s)) * (b⁻¹ + c⁻¹)) +
n⁻¹ * ((a⁻¹ + c⁻¹) * (rat_of_pnat (K t))) ≤ j⁻¹, begin
rewrite -rat.left_distrib,
apply rat.le.trans,
apply rat.mul_le_mul_of_nonneg_right,
apply pceil_helper Hn,
repeat (apply rat.mul_pos | apply rat.add_pos | apply inv_pos | apply rat_of_pnat_is_pos),
apply rat.le_of_lt,
apply rat.add_pos,
apply rat.mul_pos,
apply rat_of_pnat_is_pos,
apply rat.add_pos,
repeat apply inv_pos,
apply rat.mul_pos,
apply rat.add_pos,
repeat apply inv_pos,
apply rat_of_pnat_is_pos,
have H : (rat_of_pnat (K s) * (b⁻¹ + c⁻¹) + (a⁻¹ + c⁻¹) * rat_of_pnat (K t)) ≠ 0, begin
apply rat.ne_of_gt,
repeat (apply rat.mul_pos | apply rat.add_pos | apply rat_of_pnat_is_pos | apply inv_pos),
end,
rewrite (rat.div_helper H),
apply rat.le.refl
end,
apply rat.add_le_add,
rewrite [-rat.mul_sub_left_distrib, abs_mul],
apply rat.le.trans,
apply rat.mul_le_mul,
apply canon_bound,
apply Hs,
apply Ht,
apply abs_nonneg,
apply rat.le_of_lt,
apply rat_of_pnat_is_pos,
rewrite [*inv_mul_eq_mul_inv, -rat.right_distrib, -rat.mul.assoc, rat.mul.comm],
apply rat.mul_le_mul_of_nonneg_left,
apply rat.le.refl,
apply rat.le_of_lt,
apply inv_pos,
rewrite [-rat.mul_sub_right_distrib, abs_mul],
apply rat.le.trans,
apply rat.mul_le_mul,
apply Hs,
apply canon_bound,
apply Ht,
apply abs_nonneg,
apply add_invs_nonneg,
rewrite [*inv_mul_eq_mul_inv, -rat.right_distrib, mul.comm _ n⁻¹, rat.mul.assoc],
apply rat.mul_le_mul,
repeat apply rat.le.refl,
apply rat.le_of_lt,
apply rat.mul_pos,
apply rat.add_pos,
repeat apply inv_pos,
apply rat_of_pnat_is_pos,
apply rat.le_of_lt,
apply inv_pos
end
theorem s_distrib {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) :
smul s (sadd t u) ≡ sadd (smul s t) (smul s u) :=
begin
apply eq_of_bdd,
repeat (assumption | apply reg_add_reg | apply reg_mul_reg),
intros,
let exh1 := λ a b c, mul_bound_helper Hs Ht a b c (2 * j),
apply exists.elim,
apply exh1,
rotate 3,
intros N1 HN1,
let exh2 := λ d e f, mul_bound_helper Hs Hu d e f (2 * j),
apply exists.elim,
apply exh2,
rotate 3,
intros N2 HN2,
existsi max N1 N2,
intros n Hn,
rewrite [↑sadd at *, ↑smul, rewrite_helper3, -add_halves j, -*pnat.mul.assoc at *],
apply rat.le.trans,
apply abs_add_le_abs_add_abs,
apply rat.add_le_add,
apply HN1,
apply le.trans,
apply max_left N1 N2,
apply Hn,
apply HN2,
apply le.trans,
apply max_right N1 N2,
apply Hn
end
theorem mul_zero_equiv_zero {s t : seq} (Hs : regular s) (Ht : regular t) (Htz : t ≡ zero) :
smul s t ≡ zero :=
begin
apply eq_of_bdd_var,
apply reg_mul_reg Hs Ht,
apply zero_is_reg,
intro ε Hε,
let Bd := bdd_of_eq_var Ht zero_is_reg Htz (ε / (Kq s))
(div_pos_of_pos_of_pos Hε (Kq_bound_pos Hs)),
cases Bd with [N, HN],
existsi N,
intro n Hn,
rewrite [↑equiv at Htz, ↑zero at *, rat.sub_zero, ↑smul, abs_mul],
apply rat.le.trans,
apply rat.mul_le_mul,
apply Kq_bound Hs,
let HN' := λ n, (!rat.sub_zero ▸ HN n),
apply HN',
apply le.trans Hn,
apply pnat.mul_le_mul_left,
apply abs_nonneg,
apply rat.le_of_lt (Kq_bound_pos Hs),
rewrite (rat.mul_div_cancel' (ne.symm (rat.ne_of_lt (Kq_bound_pos Hs)))),
apply rat.le.refl
end
theorem neg_bound_eq_bound (s : seq) : K (sneg s) = K s :=
by rewrite [↑K, ↑sneg, abs_neg]
theorem neg_bound2_eq_bound2 (s t : seq) : K₂ s (sneg t) = K₂ s t :=
by rewrite [↑K₂, neg_bound_eq_bound]
theorem sneg_def (s : seq) : (λ (n : +), -(s n)) = sneg s := rfl
theorem mul_neg_equiv_neg_mul {s t : seq} : smul s (sneg t) ≡ sneg (smul s t) :=
begin
rewrite [↑equiv, ↑smul],
intros,
rewrite [↑sneg, *sub_neg_eq_add, -neg_mul_eq_mul_neg, rat.add.comm, *sneg_def,
*neg_bound2_eq_bound2, rat.sub_self, abs_zero],
apply add_invs_nonneg
end
theorem equiv_of_diff_equiv_zero {s t : seq} (Hs : regular s) (Ht : regular t)
(H : sadd s (sneg t) ≡ zero) : s ≡ t :=
begin
have hsimp : ∀ a b c d e : , a + b + c + (d + e) = b + d + a + e + c, from
λ a b c d e, calc
a + b + c + (d + e) = a + b + (d + e) + c : rat.add.right_comm
... = a + (b + d) + e + c : by rewrite[-*rat.add.assoc]
... = b + d + a + e + c : rat.add.comm,
apply eq_of_bdd Hs Ht,
intros,
let He := bdd_of_eq H,
existsi 2 * (2 * (2 * j)),
intros n Hn,
rewrite (rewrite_helper5 _ _ (s (2 * n)) (t (2 * n))),
apply rat.le.trans,
apply abs_add_three,
apply rat.le.trans,
apply add_le_add_three,
apply Hs,
rewrite [↑sadd at He, ↑sneg at He, ↑zero at He],
let He' := λ a b c, !rat.sub_zero ▸ (He a b c),
apply (He' _ _ Hn),
apply Ht,
rewrite [hsimp, add_halves, -(add_halves j), -(add_halves (2 * j)), -*rat.add.assoc],
apply rat.add_le_add_right,
apply add_le_add_three,
repeat (apply rat.le.trans; apply inv_ge_of_le Hn; apply inv_two_mul_le_inv)
end
theorem s_sub_cancel (s : seq) : sadd s (sneg s) ≡ zero :=
begin
rewrite [↑equiv, ↑sadd, ↑sneg, ↑zero],
intros,
rewrite [rat.sub_zero, rat.sub_self, abs_zero],
apply add_invs_nonneg
end
theorem diff_equiv_zero_of_equiv {s t : seq} (Hs : regular s) (Ht : regular t) (H : s ≡ t) :
sadd s (sneg t) ≡ zero :=
begin
apply equiv.trans,
rotate 4,
apply s_sub_cancel t,
rotate 2,
apply zero_is_reg,
apply add_well_defined,
repeat (assumption | apply reg_neg_reg),
apply equiv.refl,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg)
end
theorem mul_well_defined_half1 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Etu : t ≡ u) : smul s t ≡ smul s u :=
begin
apply equiv_of_diff_equiv_zero,
rotate 2,
apply equiv.trans,
rotate 3,
apply equiv.symm,
apply add_well_defined,
rotate 4,
apply equiv.refl,
apply mul_neg_equiv_neg_mul,
apply equiv.trans,
rotate 3,
apply equiv.symm,
apply s_distrib,
rotate 3,
apply mul_zero_equiv_zero,
rotate 2,
apply diff_equiv_zero_of_equiv,
repeat (assumption | apply reg_mul_reg | apply reg_neg_reg | apply reg_add_reg |
apply zero_is_reg)
end
theorem mul_well_defined_half2 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Est : s ≡ t) : smul s u ≡ smul t u :=
begin
apply equiv.trans,
rotate 3,
apply s_mul_comm,
apply equiv.trans,
rotate 3,
apply mul_well_defined_half1,
rotate 2,
apply Ht,
rotate 1,
apply s_mul_comm,
repeat (assumption | apply reg_mul_reg)
end
theorem mul_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Hv : regular v) (Esu : s ≡ u) (Etv : t ≡ v) : smul s t ≡ smul u v :=
begin
apply equiv.trans,
exact reg_mul_reg Hs Ht,
exact reg_mul_reg Hs Hv,
exact reg_mul_reg Hu Hv,
apply mul_well_defined_half1,
repeat assumption,
apply mul_well_defined_half2,
repeat assumption
end
theorem neg_well_defined {s t : seq} (Est : s ≡ t) : sneg s ≡ sneg t :=
begin
rewrite [↑sneg, ↑equiv at *],
intros,
rewrite [-abs_neg, neg_sub, sub_neg_eq_add, rat.add.comm],
apply Est
end
theorem one_is_reg : regular one :=
begin
rewrite [↑regular, ↑one],
intros,
rewrite [rat.sub_self, abs_zero],
apply add_invs_nonneg
end
theorem s_one_mul {s : seq} (H : regular s) : smul one s ≡ s :=
begin
intros,
rewrite [↑smul, ↑one, rat.one_mul],
apply rat.le.trans,
apply H,
apply rat.add_le_add_right,
apply inv_mul_le_inv
end
theorem s_mul_one {s : seq} (H : regular s) : smul s one ≡ s :=
begin
apply equiv.trans,
apply reg_mul_reg H one_is_reg,
rotate 2,
apply s_mul_comm,
apply s_one_mul H,
apply reg_mul_reg one_is_reg H,
apply H
end
theorem zero_nequiv_one : ¬ zero ≡ one :=
begin
intro Hz,
rewrite [↑equiv at Hz, ↑zero at Hz, ↑one at Hz],
let H := Hz (2 * 2),
rewrite [rat.zero_sub at H, abs_neg at H, add_halves at H],
have H' : pone⁻¹ ≤ 2⁻¹, from calc
pone⁻¹ = 1 : by rewrite -pone_inv
... = abs 1 : abs_of_pos zero_lt_one
... ≤ 2⁻¹ : H,
let H'' := ge_of_inv_le H',
apply absurd (one_lt_two) (not_lt_of_ge H'')
end
---------------------------------------------
-- constant sequences
definition const (a : ) : seq := λ n, a
theorem const_reg (a : ) : regular (const a) :=
begin
intros,
rewrite [↑const, rat.sub_self, abs_zero],
apply add_invs_nonneg
end
theorem add_consts (a b : ) : sadd (const a) (const b) ≡ const (a + b) :=
by apply equiv.refl
theorem mul_consts (a b : ) : smul (const a) (const b) ≡ const (a * b) :=
by apply equiv.refl
theorem neg_const (a : ) : sneg (const a) ≡ const (-a) :=
by apply equiv.refl
---------------------------------------------
-- create the type of regular sequences and lift theorems
record reg_seq : Type :=
(sq : seq) (is_reg : regular sq)
definition requiv (s t : reg_seq) := (reg_seq.sq s) ≡ (reg_seq.sq t)
definition requiv.refl (s : reg_seq) : requiv s s := equiv.refl (reg_seq.sq s)
definition requiv.symm (s t : reg_seq) (H : requiv s t) : requiv t s :=
equiv.symm (reg_seq.sq s) (reg_seq.sq t) H
definition requiv.trans (s t u : reg_seq) (H : requiv s t) (H2 : requiv t u) : requiv s u :=
equiv.trans _ _ _ (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) H H2
definition radd (s t : reg_seq) : reg_seq :=
reg_seq.mk (sadd (reg_seq.sq s) (reg_seq.sq t))
(reg_add_reg (reg_seq.is_reg s) (reg_seq.is_reg t))
infix `+` := radd
definition rmul (s t : reg_seq) : reg_seq :=
reg_seq.mk (smul (reg_seq.sq s) (reg_seq.sq t))
(reg_mul_reg (reg_seq.is_reg s) (reg_seq.is_reg t))
infix `*` := rmul
definition rneg (s : reg_seq) : reg_seq :=
reg_seq.mk (sneg (reg_seq.sq s)) (reg_neg_reg (reg_seq.is_reg s))
prefix `-` := rneg
definition radd_well_defined {s t u v : reg_seq} (H : requiv s u) (H2 : requiv t v) :
requiv (s + t) (u + v) :=
add_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) (reg_seq.is_reg v) H H2
definition rmul_well_defined {s t u v : reg_seq} (H : requiv s u) (H2 : requiv t v) :
requiv (s * t) (u * v) :=
mul_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) (reg_seq.is_reg v) H H2
definition rneg_well_defined {s t : reg_seq} (H : requiv s t) : requiv (-s) (-t) :=
neg_well_defined H
theorem requiv_is_equiv : equivalence requiv :=
mk_equivalence requiv requiv.refl requiv.symm requiv.trans
definition reg_seq.to_setoid [instance] : setoid reg_seq :=
⦃setoid, r := requiv, iseqv := requiv_is_equiv⦄
definition r_zero : reg_seq :=
reg_seq.mk (zero) (zero_is_reg)
definition r_one : reg_seq :=
reg_seq.mk (one) (one_is_reg)
theorem r_add_comm (s t : reg_seq) : requiv (s + t) (t + s) :=
s_add_comm (reg_seq.sq s) (reg_seq.sq t)
theorem r_add_assoc (s t u : reg_seq) : requiv (s + t + u) (s + (t + u)) :=
s_add_assoc (reg_seq.sq s) (reg_seq.sq t) (reg_seq.sq u) (reg_seq.is_reg s) (reg_seq.is_reg u)
theorem r_zero_add (s : reg_seq) : requiv (r_zero + s) s :=
s_zero_add (reg_seq.sq s) (reg_seq.is_reg s)
theorem r_add_zero (s : reg_seq) : requiv (s + r_zero) s :=
s_add_zero (reg_seq.sq s) (reg_seq.is_reg s)
theorem r_neg_cancel (s : reg_seq) : requiv (-s + s) r_zero :=
s_neg_cancel (reg_seq.sq s) (reg_seq.is_reg s)
theorem r_mul_comm (s t : reg_seq) : requiv (s * t) (t * s) :=
s_mul_comm (reg_seq.sq s) (reg_seq.sq t)
theorem r_mul_assoc (s t u : reg_seq) : requiv (s * t * u) (s * (t * u)) :=
s_mul_assoc (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u)
theorem r_mul_one (s : reg_seq) : requiv (s * r_one) s :=
s_mul_one (reg_seq.is_reg s)
theorem r_one_mul (s : reg_seq) : requiv (r_one * s) s :=
s_one_mul (reg_seq.is_reg s)
theorem r_distrib (s t u : reg_seq) : requiv (s * (t + u)) (s * t + s * u) :=
s_distrib (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u)
theorem r_zero_nequiv_one : ¬ requiv r_zero r_one :=
zero_nequiv_one
definition r_const (a : ) : reg_seq := reg_seq.mk (const a) (const_reg a)
theorem r_add_consts (a b : ) : requiv (r_const a + r_const b) (r_const (a + b)) := add_consts a b
theorem r_mul_consts (a b : ) : requiv (r_const a * r_const b) (r_const (a * b)) := mul_consts a b
theorem r_neg_const (a : ) : requiv (-r_const a) (r_const (-a)) := neg_const a
end s
----------------------------------------------
-- take quotients to get and show it's a comm ring
open s
definition real := quot reg_seq.to_setoid
namespace real
notation `` := real
definition add (x y : ) : :=
(quot.lift_on₂ x y (λ a b, quot.mk (a + b))
(take a b c d : reg_seq, take Hab : requiv a c, take Hcd : requiv b d,
quot.sound (radd_well_defined Hab Hcd)))
protected definition prio := num.pred rat.prio
infix [priority real.prio] `+` := add
definition mul (x y : ) : :=
(quot.lift_on₂ x y (λ a b, quot.mk (a * b))
(take a b c d : reg_seq, take Hab : requiv a c, take Hcd : requiv b d,
quot.sound (rmul_well_defined Hab Hcd)))
infix [priority real.prio] `*` := mul
definition neg (x : ) : :=
(quot.lift_on x (λ a, quot.mk (-a)) (take a b : reg_seq, take Hab : requiv a b,
quot.sound (rneg_well_defined Hab)))
prefix [priority real.prio] `-` := neg
open rat -- no coercions before
definition of_rat [coercion] (a : ) : := quot.mk (s.r_const a)
definition of_num [coercion] [reducible] (n : num) : := of_rat (rat.of_num n)
--definition zero : := 0
--definition one : := 1
--definition zero : := quot.mk r_zero
--notation 0 := zero
--definition one : := quot.mk r_one
theorem add_comm (x y : ) : x + y = y + x :=
quot.induction_on₂ x y (λ s t, quot.sound (r_add_comm s t))
theorem add_assoc (x y z : ) : x + y + z = x + (y + z) :=
quot.induction_on₃ x y z (λ s t u, quot.sound (r_add_assoc s t u))
theorem zero_add (x : ) : 0 + x = x :=
quot.induction_on x (λ s, quot.sound (r_zero_add s))
theorem add_zero (x : ) : x + 0 = x :=
quot.induction_on x (λ s, quot.sound (r_add_zero s))
theorem neg_cancel (x : ) : -x + x = 0 :=
quot.induction_on x (λ s, quot.sound (r_neg_cancel s))
theorem mul_assoc (x y z : ) : x * y * z = x * (y * z) :=
quot.induction_on₃ x y z (λ s t u, quot.sound (r_mul_assoc s t u))
theorem mul_comm (x y : ) : x * y = y * x :=
quot.induction_on₂ x y (λ s t, quot.sound (r_mul_comm s t))
theorem one_mul (x : ) : 1 * x = x :=
quot.induction_on x (λ s, quot.sound (r_one_mul s))
theorem mul_one (x : ) : x * 1 = x :=
quot.induction_on x (λ s, quot.sound (r_mul_one s))
theorem distrib (x y z : ) : x * (y + z) = x * y + x * z :=
quot.induction_on₃ x y z (λ s t u, quot.sound (r_distrib s t u))
theorem distrib_l (x y z : ) : (x + y) * z = x * z + y * z :=
by rewrite [mul_comm, distrib, {x * _}mul_comm, {y * _}mul_comm] -- this shouldn't be necessary
theorem zero_ne_one : ¬ (0 : ) = 1 :=
take H : 0 = 1,
absurd (quot.exact H) (r_zero_nequiv_one)
protected definition comm_ring [reducible] : algebra.comm_ring :=
begin
fapply algebra.comm_ring.mk,
exact add,
exact add_assoc,
exact of_num 0,
exact zero_add,
exact add_zero,
exact neg,
exact neg_cancel,
exact add_comm,
exact mul,
exact mul_assoc,
apply of_num 1,
apply one_mul,
apply mul_one,
apply distrib,
apply distrib_l,
apply mul_comm
end
theorem of_rat_add (a b : ) : of_rat a + of_rat b = of_rat (a + b) :=
quot.sound (s.r_add_consts a b)
theorem of_rat_neg (a : ) : of_rat (-a) = -of_rat a := eq.symm (quot.sound (s.r_neg_const a))
theorem of_rat_mul (a b : ) : of_rat a * of_rat b = of_rat (a * b) :=
quot.sound (s.r_mul_consts a b)
theorem add_half_of_rat (n : +) : of_rat (2 * n)⁻¹ + of_rat (2 * n)⁻¹ = of_rat (n⁻¹) :=
by rewrite [of_rat_add, pnat.add_halves]
end real