lean2/hott/algebra/precategory/iso.hlean
2015-03-12 20:52:00 -07:00

318 lines
13 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.precategory.iso
Author: Floris van Doorn, Jakob von Raumer
-/
import algebra.precategory.basic types.sigma
open eq category prod equiv is_equiv sigma sigma.ops is_trunc
namespace iso
structure split_mono [class] {ob : Type} [C : precategory ob] {a b : ob} (f : a ⟶ b) :=
{retraction_of : b ⟶ a}
(retraction_comp : retraction_of ∘ f = id)
structure split_epi [class] {ob : Type} [C : precategory ob] {a b : ob} (f : a ⟶ b) :=
{section_of : b ⟶ a}
(comp_section : f ∘ section_of = id)
structure is_iso [class] {ob : Type} [C : precategory ob] {a b : ob} (f : a ⟶ b) :=
{inverse : b ⟶ a}
(left_inverse : inverse ∘ f = id)
(right_inverse : f ∘ inverse = id)
attribute is_iso.inverse [quasireducible]
attribute is_iso [multiple-instances]
open split_mono split_epi is_iso
definition retraction_of [reducible] := @split_mono.retraction_of
definition retraction_comp [reducible] := @split_mono.retraction_comp
definition section_of [reducible] := @split_epi.section_of
definition comp_section [reducible] := @split_epi.comp_section
definition inverse [reducible] := @is_iso.inverse
definition left_inverse [reducible] := @is_iso.left_inverse
definition right_inverse [reducible] := @is_iso.right_inverse
postfix `⁻¹` := inverse
--a second notation for the inverse, which is not overloaded
postfix [parsing-only] `⁻¹ʰ`:std.prec.max_plus := inverse
variables {ob : Type} [C : precategory ob]
variables {a b c : ob} {g : b ⟶ c} {f : a ⟶ b} {h : b ⟶ a}
include C
definition split_mono_of_is_iso [instance] [priority 300] [reducible]
(f : a ⟶ b) [H : is_iso f] : split_mono f :=
split_mono.mk !left_inverse
definition split_epi_of_is_iso [instance] [priority 300] [reducible]
(f : a ⟶ b) [H : is_iso f] : split_epi f :=
split_epi.mk !right_inverse
definition is_iso_id [instance] [priority 500] (a : ob) : is_iso (ID a) :=
is_iso.mk !id_comp !id_comp
definition is_iso_inverse [instance] [priority 200] (f : a ⟶ b) [H : is_iso f] : is_iso f⁻¹ :=
is_iso.mk !right_inverse !left_inverse
definition left_inverse_eq_right_inverse {f : a ⟶ b} {g g' : hom b a}
(Hl : g ∘ f = id) (Hr : f ∘ g' = id) : g = g' :=
by rewrite [-(id_right g), -Hr, assoc, Hl, id_left]
definition retraction_eq [H : split_mono f] (H2 : f ∘ h = id) : retraction_of f = h :=
left_inverse_eq_right_inverse !retraction_comp H2
definition section_eq [H : split_epi f] (H2 : h ∘ f = id) : section_of f = h :=
(left_inverse_eq_right_inverse H2 !comp_section)⁻¹
definition inverse_eq_right [H : is_iso f] (H2 : f ∘ h = id) : f⁻¹ = h :=
left_inverse_eq_right_inverse !left_inverse H2
definition inverse_eq_left [H : is_iso f] (H2 : h ∘ f = id) : f⁻¹ = h :=
(left_inverse_eq_right_inverse H2 !right_inverse)⁻¹
definition retraction_eq_section (f : a ⟶ b) [Hl : split_mono f] [Hr : split_epi f] :
retraction_of f = section_of f :=
retraction_eq !comp_section
definition is_iso_of_split_epi_of_split_mono (f : a ⟶ b) [Hl : split_mono f] [Hr : split_epi f]
: is_iso f :=
is_iso.mk ((retraction_eq_section f) ▹ (retraction_comp f)) (comp_section f)
definition inverse_unique (H H' : is_iso f) : @inverse _ _ _ _ f H = @inverse _ _ _ _ f H' :=
inverse_eq_left !left_inverse
definition inverse_involutive (f : a ⟶ b) [H : is_iso f] : (f⁻¹)⁻¹ = f :=
inverse_eq_right !left_inverse
definition retraction_id (a : ob) : retraction_of (ID a) = id :=
retraction_eq !id_comp
definition section_id (a : ob) : section_of (ID a) = id :=
section_eq !id_comp
definition id_inverse (a : ob) [H : is_iso (ID a)] : (ID a)⁻¹ = id :=
inverse_eq_left !id_comp
definition split_mono_comp [instance] [priority 150] (g : b ⟶ c) (f : a ⟶ b)
[Hf : split_mono f] [Hg : split_mono g] : split_mono (g ∘ f) :=
split_mono.mk
(show (retraction_of f ∘ retraction_of g) ∘ g ∘ f = id,
by rewrite [-assoc, assoc _ g f, retraction_comp, id_left, retraction_comp])
definition split_epi_comp [instance] [priority 150] (g : b ⟶ c) (f : a ⟶ b)
[Hf : split_epi f] [Hg : split_epi g] : split_epi (g ∘ f) :=
split_epi.mk
(show (g ∘ f) ∘ section_of f ∘ section_of g = id,
by rewrite [-assoc, {f ∘ _}assoc, comp_section, id_left, comp_section])
definition is_iso_comp [instance] [priority 150] (g : b ⟶ c) (f : a ⟶ b)
[Hf : is_iso f] [Hg : is_iso g] : is_iso (g ∘ f) :=
!is_iso_of_split_epi_of_split_mono
-- "is_iso f" is equivalent to a certain sigma type
-- definition is_iso.sigma_char (f : hom a b) :
-- (Σ (g : hom b a), (g ∘ f = id) × (f ∘ g = id)) ≃ is_iso f :=
-- begin
-- fapply equiv.MK,
-- {intro S, apply is_iso.mk,
-- exact (pr₁ S.2),
-- exact (pr₂ S.2)},
-- {intro H, cases H with (g, η, ε),
-- exact (sigma.mk g (pair η ε))},
-- {intro H, cases H, apply idp},
-- {intro S, cases S with (g, ηε), cases ηε, apply idp},
-- end
definition is_hprop_is_iso [instance] (f : hom a b) : is_hprop (is_iso f) :=
begin
apply is_hprop.mk, intros (H, H'),
cases H with (g, li, ri), cases H' with (g', li', ri'),
fapply (apD0111 (@is_iso.mk ob C a b f)),
apply left_inverse_eq_right_inverse,
apply li,
apply ri',
apply is_hprop.elim,
apply is_hprop.elim,
end
/- iso objects -/
structure iso (a b : ob) :=
(to_hom : hom a b)
[struct : is_iso to_hom]
infix `≅`:50 := iso.iso
attribute iso.struct [instance] [priority 400]
namespace iso
attribute to_hom [coercion]
definition MK (f : a ⟶ b) (g : b ⟶ a) (H1 : g ∘ f = id) (H2 : f ∘ g = id) :=
@mk _ _ _ _ f (is_iso.mk H1 H2)
definition to_inv (f : a ≅ b) : b ⟶ a :=
(to_hom f)⁻¹
protected definition refl (a : ob) : a ≅ a :=
mk (ID a)
protected definition symm ⦃a b : ob⦄ (H : a ≅ b) : b ≅ a :=
mk (to_hom H)⁻¹
protected definition trans ⦃a b c : ob⦄ (H1 : a ≅ b) (H2 : b ≅ c) : a ≅ c :=
mk (to_hom H2 ∘ to_hom H1)
protected definition eq_mk' {f f' : a ⟶ b} [H : is_iso f] [H' : is_iso f'] (p : f = f')
: iso.mk f = iso.mk f' :=
apD011 iso.mk p !is_hprop.elim
protected definition eq_mk {f f' : a ≅ b} (p : to_hom f = to_hom f') : f = f' :=
by (cases f; cases f'; apply (iso.eq_mk' p))
-- The structure for isomorphism can be characterized up to equivalence by a sigma type.
definition sigma_char ⦃a b : ob⦄ : (Σ (f : hom a b), is_iso f) ≃ (a ≅ b) :=
begin
fapply (equiv.mk),
{intro S, apply iso.mk, apply (S.2)},
{fapply adjointify,
{intro p, cases p with (f, H), exact (sigma.mk f H)},
{intro p, cases p, apply idp},
{intro S, cases S, apply idp}},
end
end iso
-- The type of isomorphisms between two objects is a set
definition is_hset_iso [instance] : is_hset (a ≅ b) :=
begin
apply is_trunc_is_equiv_closed,
apply (equiv.to_is_equiv (!iso.sigma_char)),
end
definition iso_of_eq (p : a = b) : a ≅ b :=
eq.rec_on p (iso.mk id)
structure mono [class] (f : a ⟶ b) :=
(elim : ∀c (g h : hom c a), f ∘ g = f ∘ h → g = h)
structure epi [class] (f : a ⟶ b) :=
(elim : ∀c (g h : hom b c), g ∘ f = h ∘ f → g = h)
definition mono_of_split_mono [instance] (f : a ⟶ b) [H : split_mono f] : mono f :=
mono.mk
(λ c g h H,
calc
g = id ∘ g : by rewrite id_left
... = (retraction_of f ∘ f) ∘ g : by rewrite retraction_comp
... = (retraction_of f ∘ f) ∘ h : by rewrite [-assoc, H, -assoc]
... = id ∘ h : by rewrite retraction_comp
... = h : by rewrite id_left)
definition epi_of_split_epi [instance] (f : a ⟶ b) [H : split_epi f] : epi f :=
epi.mk
(λ c g h H,
calc
g = g ∘ id : by rewrite id_right
... = g ∘ f ∘ section_of f : by rewrite -comp_section
... = h ∘ f ∘ section_of f : by rewrite [assoc, H, -assoc]
... = h ∘ id : by rewrite comp_section
... = h : by rewrite id_right)
definition mono_comp [instance] (g : b ⟶ c) (f : a ⟶ b) [Hf : mono f] [Hg : mono g]
: mono (g ∘ f) :=
mono.mk
(λ d h₁ h₂ H,
have H2 : g ∘ (f ∘ h₁) = g ∘ (f ∘ h₂),
begin
rewrite *assoc, exact H
end,
!mono.elim (!mono.elim H2))
definition epi_comp [instance] (g : b ⟶ c) (f : a ⟶ b) [Hf : epi f] [Hg : epi g]
: epi (g ∘ f) :=
epi.mk
(λ d h₁ h₂ H,
have H2 : (h₁ ∘ g) ∘ f = (h₂ ∘ g) ∘ f,
begin
rewrite -*assoc, exact H
end,
!epi.elim (!epi.elim H2))
end iso
namespace iso
/-
rewrite lemmas for inverses, modified from
https://github.com/JasonGross/HoTT-categories/blob/master/theories/Categories/Category/Morphisms.v
-/
section
variables {ob : Type} [C : precategory ob] include C
variables {a b c d : ob} (f : b ⟶ a)
(r : c ⟶ d) (q : b ⟶ c) (p : a ⟶ b)
(g : d ⟶ c)
variable [Hq : is_iso q] include Hq
definition comp.right_inverse : q ∘ q⁻¹ = id := !right_inverse
definition comp.left_inverse : q⁻¹ ∘ q = id := !left_inverse
definition inverse_comp_cancel_left : q⁻¹ ∘ (q ∘ p) = p :=
by rewrite [assoc, left_inverse, id_left]
definition comp_inverse_cancel_left : q ∘ (q⁻¹ ∘ g) = g :=
by rewrite [assoc, right_inverse, id_left]
definition comp_inverse_cancel_right : (r ∘ q) ∘ q⁻¹ = r :=
by rewrite [-assoc, right_inverse, id_right]
definition inverse_comp_cancel_right : (f ∘ q⁻¹) ∘ q = f :=
by rewrite [-assoc, left_inverse, id_right]
definition comp_inverse [Hp : is_iso p] [Hpq : is_iso (q ∘ p)] : (q ∘ p)⁻¹ʰ = p⁻¹ʰ ∘ q⁻¹ʰ :=
inverse_eq_left
(show (p⁻¹ʰ ∘ q⁻¹ʰ) ∘ q ∘ p = id, from
by rewrite [-assoc, inverse_comp_cancel_left, left_inverse])
definition inverse_comp_inverse_left [H' : is_iso g] : (q⁻¹ ∘ g)⁻¹ = g⁻¹ ∘ q :=
inverse_involutive q ▹ comp_inverse q⁻¹ g
definition inverse_comp_inverse_right [H' : is_iso f] : (q ∘ f⁻¹)⁻¹ = f ∘ q⁻¹ :=
inverse_involutive f ▹ comp_inverse q f⁻¹
definition inverse_comp_inverse_inverse [H' : is_iso r] : (q⁻¹ ∘ r⁻¹)⁻¹ = r ∘ q :=
inverse_involutive r ▹ inverse_comp_inverse_left q r⁻¹
end
section
variables {ob : Type} {C : precategory ob} include C
variables {d c b a : ob}
{i : b ⟶ c} {f : b ⟶ a}
{r : c ⟶ d} {q : b ⟶ c} {p : a ⟶ b}
{g : d ⟶ c} {h : c ⟶ b}
{x : b ⟶ d} {z : a ⟶ c}
{y : d ⟶ b} {w : c ⟶ a}
variable [Hq : is_iso q] include Hq
definition comp_eq_of_eq_inverse_comp (H : y = q⁻¹ ∘ g) : q ∘ y = g :=
H⁻¹ ▹ comp_inverse_cancel_left q g
definition comp_eq_of_eq_comp_inverse (H : w = f ∘ q⁻¹) : w ∘ q = f :=
H⁻¹ ▹ inverse_comp_cancel_right f q
definition inverse_comp_eq_of_eq_comp (H : z = q ∘ p) : q⁻¹ ∘ z = p :=
H⁻¹ ▹ inverse_comp_cancel_left q p
definition comp_inverse_eq_of_eq_comp (H : x = r ∘ q) : x ∘ q⁻¹ = r :=
H⁻¹ ▹ comp_inverse_cancel_right r q
definition eq_comp_of_inverse_comp_eq (H : q⁻¹ ∘ g = y) : g = q ∘ y :=
(comp_eq_of_eq_inverse_comp H⁻¹)⁻¹
definition eq_comp_of_comp_inverse_eq (H : f ∘ q⁻¹ = w) : f = w ∘ q :=
(comp_eq_of_eq_comp_inverse H⁻¹)⁻¹
definition eq_inverse_comp_of_comp_eq (H : q ∘ p = z) : p = q⁻¹ ∘ z :=
(inverse_comp_eq_of_eq_comp H⁻¹)⁻¹
definition eq_comp_inverse_of_comp_eq (H : r ∘ q = x) : r = x ∘ q⁻¹ :=
(comp_inverse_eq_of_eq_comp H⁻¹)⁻¹
definition eq_inverse_of_comp_eq_id' (H : h ∘ q = id) : h = q⁻¹ := (inverse_eq_left H)⁻¹
definition eq_inverse_of_comp_eq_id (H : q ∘ h = id) : h = q⁻¹ := (inverse_eq_right H)⁻¹
definition eq_of_comp_inverse_eq_id (H : i ∘ q⁻¹ = id) : i = q :=
eq_inverse_of_comp_eq_id' H ⬝ inverse_involutive q
definition eq_of_inverse_comp_eq_id (H : q⁻¹ ∘ i = id) : i = q :=
eq_inverse_of_comp_eq_id H ⬝ inverse_involutive q
definition eq_of_id_eq_comp_inverse (H : id = i ∘ q⁻¹) : q = i := (eq_of_comp_inverse_eq_id H⁻¹)⁻¹
definition eq_of_id_eq_inverse_comp (H : id = q⁻¹ ∘ i) : q = i := (eq_of_inverse_comp_eq_id H⁻¹)⁻¹
definition inverse_eq_of_id_eq_comp (H : id = h ∘ q) : q⁻¹ = h :=
(eq_inverse_of_comp_eq_id' H⁻¹)⁻¹
definition inverse_eq_of_id_eq_comp' (H : id = q ∘ h) : q⁻¹ = h :=
(eq_inverse_of_comp_eq_id H⁻¹)⁻¹
end
end iso