1419 lines
48 KiB
Text
1419 lines
48 KiB
Text
----------------------------------------------------------------------------------------------------
|
||
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
-- Author: Floris van Doorn
|
||
----------------------------------------------------------------------------------------------------
|
||
import logic algebra.binary
|
||
open tactic binary eq.ops eq
|
||
open decidable
|
||
|
||
namespace experiment
|
||
inductive nat : Type :=
|
||
zero : nat,
|
||
succ : nat → nat
|
||
|
||
|
||
namespace nat
|
||
notation `ℕ`:max := nat
|
||
|
||
definition plus (x y : ℕ) : ℕ
|
||
:= nat.rec x (λ n r, succ r) y
|
||
|
||
definition to_nat [coercion] (n : num) : ℕ
|
||
:= num.rec zero (λ n, pos_num.rec (succ zero) (λ n r, plus r (plus r (succ zero))) (λ n r, plus r r) n) n
|
||
|
||
namespace helper_tactics
|
||
definition apply_refl := apply @eq.refl
|
||
tactic_hint apply_refl
|
||
end helper_tactics
|
||
open helper_tactics
|
||
|
||
theorem nat_rec_zero {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m)) : nat.rec x f 0 = x
|
||
|
||
theorem nat_rec_succ {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m)) (n : ℕ) : nat.rec x f (succ n) = f n (nat.rec x f n)
|
||
|
||
theorem succ_ne_zero (n : ℕ) : succ n ≠ 0
|
||
:= assume H : succ n = 0,
|
||
have H2 : true = false, from
|
||
let f := (nat.rec false (fun a b, true)) in
|
||
calc true = f (succ n) : _
|
||
... = f 0 : {H}
|
||
... = false : _,
|
||
absurd H2 true_ne_false
|
||
|
||
definition pred (n : ℕ) := nat.rec 0 (fun m x, m) n
|
||
|
||
theorem pred_zero : pred 0 = 0
|
||
|
||
theorem pred_succ (n : ℕ) : pred (succ n) = n
|
||
|
||
theorem zero_or_succ (n : ℕ) : n = 0 ∨ n = succ (pred n)
|
||
:= induction_on n
|
||
(or.intro_left _ (eq.refl 0))
|
||
(take m IH, or.intro_right _
|
||
(show succ m = succ (pred (succ m)), from congr_arg succ ((pred_succ m)⁻¹)))
|
||
|
||
theorem zero_or_succ2 (n : ℕ) : n = 0 ∨ ∃k, n = succ k
|
||
:= or_of_or_of_imp_of_imp (zero_or_succ n) (assume H, H) (assume H : n = succ (pred n), exists.intro (pred n) H)
|
||
|
||
theorem case {P : ℕ → Prop} (n : ℕ) (H1: P 0) (H2 : ∀m, P (succ m)) : P n
|
||
:= induction_on n H1 (take m IH, H2 m)
|
||
|
||
theorem discriminate {B : Prop} {n : ℕ} (H1: n = 0 → B) (H2 : ∀m, n = succ m → B) : B
|
||
:= or.elim (zero_or_succ n)
|
||
(take H3 : n = 0, H1 H3)
|
||
(take H3 : n = succ (pred n), H2 (pred n) H3)
|
||
|
||
theorem succ_inj {n m : ℕ} (H : succ n = succ m) : n = m
|
||
:= calc
|
||
n = pred (succ n) : (pred_succ n)⁻¹
|
||
... = pred (succ m) : {H}
|
||
... = m : pred_succ m
|
||
|
||
theorem succ_ne_self (n : ℕ) : succ n ≠ n
|
||
:= induction_on n
|
||
(take H : 1 = 0,
|
||
have ne : 1 ≠ 0, from succ_ne_zero 0,
|
||
absurd H ne)
|
||
(take k IH H, IH (succ_inj H))
|
||
|
||
theorem decidable_eq [instance] (n m : ℕ) : decidable (n = m)
|
||
:= have general : ∀n, decidable (n = m), from
|
||
rec_on m
|
||
(take n,
|
||
rec_on n
|
||
(inl (eq.refl 0))
|
||
(λ m iH, inr (succ_ne_zero m)))
|
||
(λ (m' : ℕ) (iH1 : ∀n, decidable (n = m')),
|
||
take n, rec_on n
|
||
(inr (ne.symm (succ_ne_zero m')))
|
||
(λ (n' : ℕ) (iH2 : decidable (n' = succ m')),
|
||
have d1 : decidable (n' = m'), from iH1 n',
|
||
decidable.rec_on d1
|
||
(assume Heq : n' = m', inl (congr_arg succ Heq))
|
||
(assume Hne : n' ≠ m',
|
||
have H1 : succ n' ≠ succ m', from
|
||
assume Heq, absurd (succ_inj Heq) Hne,
|
||
inr H1))),
|
||
general n
|
||
|
||
theorem two_step_induction_on {P : ℕ → Prop} (a : ℕ) (H1 : P 0) (H2 : P 1)
|
||
(H3 : ∀ (n : ℕ) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) : P a
|
||
:= have stronger : P a ∧ P (succ a), from
|
||
induction_on a
|
||
(and.intro H1 H2)
|
||
(take k IH,
|
||
have IH1 : P k, from and.elim_left IH,
|
||
have IH2 : P (succ k), from and.elim_right IH,
|
||
and.intro IH2 (H3 k IH1 IH2)),
|
||
and.elim_left stronger
|
||
|
||
theorem sub_induction {P : ℕ → ℕ → Prop} (n m : ℕ) (H1 : ∀m, P 0 m)
|
||
(H2 : ∀n, P (succ n) 0) (H3 : ∀n m, P n m → P (succ n) (succ m)) : P n m
|
||
:= have general : ∀m, P n m, from induction_on n
|
||
(take m : ℕ, H1 m)
|
||
(take k : ℕ,
|
||
assume IH : ∀m, P k m,
|
||
take m : ℕ,
|
||
discriminate
|
||
(assume Hm : m = 0,
|
||
Hm⁻¹ ▸ (H2 k))
|
||
(take l : ℕ,
|
||
assume Hm : m = succ l,
|
||
Hm⁻¹ ▸ (H3 k l (IH l)))),
|
||
general m
|
||
|
||
-------------------------------------------------- add
|
||
definition add (x y : ℕ) : ℕ := plus x y
|
||
infixl `+` := add
|
||
theorem add_zero (n : ℕ) : n + 0 = n
|
||
theorem add_succ (n m : ℕ) : n + succ m = succ (n + m)
|
||
---------- comm, assoc
|
||
|
||
theorem zero_add (n : ℕ) : 0 + n = n
|
||
:= induction_on n
|
||
(add_zero 0)
|
||
(take m IH, show 0 + succ m = succ m, from
|
||
calc
|
||
0 + succ m = succ (0 + m) : add_succ _ _
|
||
... = succ m : {IH})
|
||
|
||
theorem succ_add (n m : ℕ) : (succ n) + m = succ (n + m)
|
||
:= induction_on m
|
||
(calc
|
||
succ n + 0 = succ n : add_zero (succ n)
|
||
... = succ (n + 0) : {symm (add_zero n)})
|
||
(take k IH,
|
||
calc
|
||
succ n + succ k = succ (succ n + k) : add_succ _ _
|
||
... = succ (succ (n + k)) : {IH}
|
||
... = succ (n + succ k) : {symm (add_succ _ _)})
|
||
|
||
theorem add_comm (n m : ℕ) : n + m = m + n
|
||
:= induction_on m
|
||
(trans (add_zero _) (symm (zero_add _)))
|
||
(take k IH,
|
||
calc
|
||
n + succ k = succ (n+k) : add_succ _ _
|
||
... = succ (k + n) : {IH}
|
||
... = succ k + n : symm (succ_add _ _))
|
||
|
||
theorem succ_add_eq_add_succ (n m : ℕ) : succ n + m = n + succ m
|
||
:= calc
|
||
succ n + m = succ (n + m) : succ_add n m
|
||
... = n +succ m : symm (add_succ n m)
|
||
|
||
theorem add_comm_succ (n m : ℕ) : n + succ m = m + succ n
|
||
:= calc
|
||
n + succ m = succ n + m : symm (succ_add_eq_add_succ n m)
|
||
... = m + succ n : add_comm (succ n) m
|
||
|
||
theorem add_assoc (n m k : ℕ) : (n + m) + k = n + (m + k)
|
||
:= induction_on k
|
||
(calc
|
||
(n + m) + 0 = n + m : add_zero _
|
||
... = n + (m + 0) : {symm (add_zero m)})
|
||
(take l IH,
|
||
calc
|
||
(n + m) + succ l = succ ((n + m) + l) : add_succ _ _
|
||
... = succ (n + (m + l)) : {IH}
|
||
... = n + succ (m + l) : symm (add_succ _ _)
|
||
... = n + (m + succ l) : {symm (add_succ _ _)})
|
||
|
||
theorem add_left_comm (n m k : ℕ) : n + (m + k) = m + (n + k)
|
||
:= left_comm add_comm add_assoc n m k
|
||
|
||
theorem add_right_comm (n m k : ℕ) : n + m + k = n + k + m
|
||
:= right_comm add_comm add_assoc n m k
|
||
|
||
|
||
---------- inversion
|
||
|
||
theorem add_cancel_left {n m k : ℕ} : n + m = n + k → m = k
|
||
:=
|
||
induction_on n
|
||
(take H : 0 + m = 0 + k,
|
||
calc
|
||
m = 0 + m : symm (zero_add m)
|
||
... = 0 + k : H
|
||
... = k : zero_add k)
|
||
(take (n : ℕ) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k),
|
||
have H2 : succ (n + m) = succ (n + k),
|
||
from calc
|
||
succ (n + m) = succ n + m : symm (succ_add n m)
|
||
... = succ n + k : H
|
||
... = succ (n + k) : succ_add n k,
|
||
have H3 : n + m = n + k, from succ_inj H2,
|
||
IH H3)
|
||
|
||
--rename to and_cancel_right
|
||
theorem add_cancel_right {n m k : ℕ} (H : n + m = k + m) : n = k
|
||
:=
|
||
have H2 : m + n = m + k,
|
||
from calc
|
||
m + n = n + m : add_comm m n
|
||
... = k + m : H
|
||
... = m + k : add_comm k m,
|
||
add_cancel_left H2
|
||
|
||
theorem eq_zero_of_add_eq_zero_right {n m : ℕ} : n + m = 0 → n = 0
|
||
:=
|
||
induction_on n
|
||
(take (H : 0 + m = 0), eq.refl 0)
|
||
(take k IH,
|
||
assume (H : succ k + m = 0),
|
||
absurd
|
||
(show succ (k + m) = 0, from
|
||
calc
|
||
succ (k + m) = succ k + m : symm (succ_add k m)
|
||
... = 0 : H)
|
||
(succ_ne_zero (k + m)))
|
||
|
||
theorem add_eq_zero_right {n m : ℕ} (H : n + m = 0) : m = 0
|
||
:= eq_zero_of_add_eq_zero_right (trans (add_comm m n) H)
|
||
|
||
theorem add_eq_zero {n m : ℕ} (H : n + m = 0) : n = 0 ∧ m = 0
|
||
:= and.intro (eq_zero_of_add_eq_zero_right H) (add_eq_zero_right H)
|
||
|
||
-- add_eq_self below
|
||
|
||
---------- misc
|
||
|
||
theorem add_one (n:ℕ) : n + 1 = succ n
|
||
:=
|
||
calc
|
||
n + 1 = succ (n + 0) : add_succ _ _
|
||
... = succ n : {add_zero _}
|
||
|
||
theorem add_one_left (n:ℕ) : 1 + n = succ n
|
||
:=
|
||
calc
|
||
1 + n = succ (0 + n) : succ_add _ _
|
||
... = succ n : {zero_add _}
|
||
|
||
--the following theorem has a terrible name, but since the name is not a substring or superstring of another name, it is at least easy to globally replace it
|
||
theorem induction_plus_one {P : ℕ → Prop} (a : ℕ) (H1 : P 0)
|
||
(H2 : ∀ (n : ℕ) (IH : P n), P (n + 1)) : P a
|
||
:= nat.rec H1 (take n IH, (add_one n) ▸ (H2 n IH)) a
|
||
|
||
-------------------------------------------------- mul
|
||
|
||
definition mul (n m : ℕ) := nat.rec 0 (fun m x, x + n) m
|
||
infixl `*` := mul
|
||
|
||
theorem mul_zero_right (n:ℕ) : n * 0 = 0
|
||
theorem mul_succ_right (n m:ℕ) : n * succ m = n * m + n
|
||
set_option unifier.max_steps 100000
|
||
---------- comm, distr, assoc, identity
|
||
|
||
theorem mul_zero_left (n:ℕ) : 0 * n = 0
|
||
:= induction_on n
|
||
(mul_zero_right 0)
|
||
(take m IH,
|
||
calc
|
||
0 * succ m = 0 * m + 0 : mul_succ_right _ _
|
||
... = 0 * m : add_zero _
|
||
... = 0 : IH)
|
||
|
||
theorem mul_succ_left (n m:ℕ) : (succ n) * m = (n * m) + m
|
||
:= induction_on m
|
||
(calc
|
||
succ n * 0 = 0 : mul_zero_right _
|
||
... = n * 0 : symm (mul_zero_right _)
|
||
... = n * 0 + 0 : symm (add_zero _))
|
||
(take k IH,
|
||
calc
|
||
succ n * succ k = (succ n * k) + succ n : mul_succ_right _ _
|
||
... = (n * k) + k + succ n : { IH }
|
||
... = (n * k) + (k + succ n) : add_assoc _ _ _
|
||
... = (n * k) + (n + succ k) : {add_comm_succ _ _}
|
||
... = (n * k) + n + succ k : symm (add_assoc _ _ _)
|
||
... = (n * succ k) + succ k : {symm (mul_succ_right n k)})
|
||
|
||
theorem mul_comm (n m:ℕ) : n * m = m * n
|
||
:= induction_on m
|
||
(trans (mul_zero_right _) (symm (mul_zero_left _)))
|
||
(take k IH,
|
||
calc
|
||
n * succ k = n * k + n : mul_succ_right _ _
|
||
... = k * n + n : {IH}
|
||
... = (succ k) * n : symm (mul_succ_left _ _))
|
||
|
||
theorem mul_add_distr_left (n m k : ℕ) : (n + m) * k = n * k + m * k
|
||
:= induction_on k
|
||
(calc
|
||
(n + m) * 0 = 0 : mul_zero_right _
|
||
... = 0 + 0 : symm (add_zero _)
|
||
... = n * 0 + 0 : eq.refl _
|
||
... = n * 0 + m * 0 : eq.refl _)
|
||
(take l IH, calc
|
||
(n + m) * succ l = (n + m) * l + (n + m) : mul_succ_right _ _
|
||
... = n * l + m * l + (n + m) : {IH}
|
||
... = n * l + m * l + n + m : symm (add_assoc _ _ _)
|
||
... = n * l + n + m * l + m : {add_right_comm _ _ _}
|
||
... = n * l + n + (m * l + m) : add_assoc _ _ _
|
||
... = n * succ l + (m * l + m) : {symm (mul_succ_right _ _)}
|
||
... = n * succ l + m * succ l : {symm (mul_succ_right _ _)})
|
||
|
||
theorem mul_add_distr_right (n m k : ℕ) : n * (m + k) = n * m + n * k
|
||
:= calc
|
||
n * (m + k) = (m + k) * n : mul_comm _ _
|
||
... = m * n + k * n : mul_add_distr_left _ _ _
|
||
... = n * m + k * n : {mul_comm _ _}
|
||
... = n * m + n * k : {mul_comm _ _}
|
||
|
||
theorem mul_assoc (n m k:ℕ) : (n * m) * k = n * (m * k)
|
||
:= induction_on k
|
||
(calc
|
||
(n * m) * 0 = 0 : mul_zero_right _
|
||
... = n * 0 : symm (mul_zero_right _)
|
||
... = n * (m * 0) : {symm (mul_zero_right _)})
|
||
(take l IH,
|
||
calc
|
||
(n * m) * succ l = (n * m) * l + n * m : mul_succ_right _ _
|
||
... = n * (m * l) + n * m : {IH}
|
||
... = n * (m * l + m) : symm (mul_add_distr_right _ _ _)
|
||
... = n * (m * succ l) : {symm (mul_succ_right _ _)})
|
||
|
||
theorem mul_comm_left (n m k : ℕ) : n * (m * k) = m * (n * k)
|
||
:= left_comm mul_comm mul_assoc n m k
|
||
|
||
theorem mul_comm_right (n m k : ℕ) : n * m * k = n * k * m
|
||
:= right_comm mul_comm mul_assoc n m k
|
||
|
||
theorem mul_one_right (n : ℕ) : n * 1 = n
|
||
:= calc
|
||
n * 1 = n * 0 + n : mul_succ_right n 0
|
||
... = 0 + n : {mul_zero_right n}
|
||
... = n : zero_add n
|
||
|
||
theorem mul_one_left (n : ℕ) : 1 * n = n
|
||
:= calc
|
||
1 * n = n * 1 : mul_comm _ _
|
||
... = n : mul_one_right n
|
||
|
||
---------- inversion
|
||
|
||
theorem mul_eq_zero {n m : ℕ} (H : n * m = 0) : n = 0 ∨ m = 0
|
||
:=
|
||
discriminate
|
||
(take Hn : n = 0, or.intro_left _ Hn)
|
||
(take (k : ℕ),
|
||
assume (Hk : n = succ k),
|
||
discriminate
|
||
(take (Hm : m = 0), or.intro_right _ Hm)
|
||
(take (l : ℕ),
|
||
assume (Hl : m = succ l),
|
||
have Heq : succ (k * succ l + l) = n * m, from
|
||
symm (calc
|
||
n * m = n * succ l : { Hl }
|
||
... = succ k * succ l : { Hk }
|
||
... = k * succ l + succ l : mul_succ_left _ _
|
||
... = succ (k * succ l + l) : add_succ _ _),
|
||
absurd (trans Heq H) (succ_ne_zero _)))
|
||
|
||
-- see more under "positivity" below
|
||
-------------------------------------------------- le
|
||
|
||
definition le (n m:ℕ) : Prop := ∃k, n + k = m
|
||
infix `<=` := le
|
||
infix `≤` := le
|
||
|
||
theorem le_intro {n m k : ℕ} (H : n + k = m) : n ≤ m
|
||
:= exists.intro k H
|
||
|
||
theorem le_elim {n m : ℕ} (H : n ≤ m) : ∃ k, n + k = m
|
||
:= H
|
||
|
||
---------- partial order (totality is part of lt)
|
||
|
||
theorem le_intro2 (n m : ℕ) : n ≤ n + m
|
||
:= le_intro (eq.refl (n + m))
|
||
|
||
theorem le_refl (n : ℕ) : n ≤ n
|
||
:= le_intro (add_zero n)
|
||
|
||
theorem zero_le (n : ℕ) : 0 ≤ n
|
||
:= le_intro (zero_add n)
|
||
|
||
theorem le_zero {n : ℕ} (H : n ≤ 0) : n = 0
|
||
:=
|
||
obtain (k : ℕ) (Hk : n + k = 0), from le_elim H,
|
||
eq_zero_of_add_eq_zero_right Hk
|
||
|
||
theorem not_succ_zero_le (n : ℕ) : ¬ succ n ≤ 0
|
||
:= assume H : succ n ≤ 0,
|
||
have H2 : succ n = 0, from le_zero H,
|
||
absurd H2 (succ_ne_zero n)
|
||
|
||
theorem le_zero_inv {n : ℕ} (H : n ≤ 0) : n = 0
|
||
:= obtain (k : ℕ) (Hk : n + k = 0), from le_elim H,
|
||
eq_zero_of_add_eq_zero_right Hk
|
||
|
||
theorem le_trans {n m k : ℕ} (H1 : n ≤ m) (H2 : m ≤ k) : n ≤ k
|
||
:= obtain (l1 : ℕ) (Hl1 : n + l1 = m), from le_elim H1,
|
||
obtain (l2 : ℕ) (Hl2 : m + l2 = k), from le_elim H2,
|
||
le_intro
|
||
(calc
|
||
n + (l1 + l2) = n + l1 + l2 : symm (add_assoc n l1 l2)
|
||
... = m + l2 : { Hl1 }
|
||
... = k : Hl2)
|
||
|
||
theorem le_antisym {n m : ℕ} (H1 : n ≤ m) (H2 : m ≤ n) : n = m
|
||
:= obtain (k : ℕ) (Hk : n + k = m), from (le_elim H1),
|
||
obtain (l : ℕ) (Hl : m + l = n), from (le_elim H2),
|
||
have L1 : k + l = 0, from
|
||
add_cancel_left
|
||
(calc
|
||
n + (k + l) = n + k + l : { symm (add_assoc n k l) }
|
||
... = m + l : { Hk }
|
||
... = n : Hl
|
||
... = n + 0 : symm (add_zero n)),
|
||
have L2 : k = 0, from eq_zero_of_add_eq_zero_right L1,
|
||
calc
|
||
n = n + 0 : symm (add_zero n)
|
||
... = n + k : { symm L2 }
|
||
... = m : Hk
|
||
|
||
---------- interaction with add
|
||
|
||
theorem add_le_left {n m : ℕ} (H : n ≤ m) (k : ℕ) : k + n ≤ k + m
|
||
:= obtain (l : ℕ) (Hl : n + l = m), from (le_elim H),
|
||
le_intro
|
||
(calc
|
||
k + n + l = k + (n + l) : add_assoc k n l
|
||
... = k + m : { Hl })
|
||
|
||
theorem add_le_right {n m : ℕ} (H : n ≤ m) (k : ℕ) : n + k ≤ m + k
|
||
:= (add_comm k m) ▸ (add_comm k n) ▸ (add_le_left H k)
|
||
|
||
theorem add_le {n m k l : ℕ} (H1 : n ≤ k) (H2 : m ≤ l) : n + m ≤ k + l
|
||
:= le_trans (add_le_right H1 m) (add_le_left H2 k)
|
||
|
||
theorem add_le_left_inv {n m k : ℕ} (H : k + n ≤ k + m) : n ≤ m
|
||
:=
|
||
obtain (l : ℕ) (Hl : k + n + l = k + m), from (le_elim H),
|
||
le_intro (add_cancel_left
|
||
(calc
|
||
k + (n + l) = k + n + l : symm (add_assoc k n l)
|
||
... = k + m : Hl))
|
||
|
||
theorem add_le_right_inv {n m k : ℕ} (H : n + k ≤ m + k) : n ≤ m
|
||
:= add_le_left_inv (add_comm m k ▸ add_comm n k ▸ H)
|
||
|
||
---------- interaction with succ and pred
|
||
|
||
theorem succ_le {n m : ℕ} (H : n ≤ m) : succ n ≤ succ m
|
||
:= add_one m ▸ add_one n ▸ add_le_right H 1
|
||
|
||
theorem succ_le_cancel {n m : ℕ} (H : succ n ≤ succ m) : n ≤ m
|
||
:= add_le_right_inv ((add_one m)⁻¹ ▸ (add_one n)⁻¹ ▸ H)
|
||
|
||
theorem self_le_succ (n : ℕ) : n ≤ succ n
|
||
:= le_intro (add_one n)
|
||
|
||
theorem le_imp_le_succ {n m : ℕ} (H : n ≤ m) : n ≤ succ m
|
||
:= le_trans H (self_le_succ m)
|
||
|
||
theorem succ_le_left_or {n m : ℕ} (H : n ≤ m) : succ n ≤ m ∨ n = m
|
||
:= obtain (k : ℕ) (Hk : n + k = m), from (le_elim H),
|
||
discriminate
|
||
(assume H3 : k = 0,
|
||
have Heq : n = m,
|
||
from calc
|
||
n = n + 0 : (add_zero n)⁻¹
|
||
... = n + k : {H3⁻¹}
|
||
... = m : Hk,
|
||
or.intro_right _ Heq)
|
||
(take l:ℕ,
|
||
assume H3 : k = succ l,
|
||
have Hlt : succ n ≤ m, from
|
||
(le_intro
|
||
(calc
|
||
succ n + l = n + succ l : succ_add_eq_add_succ n l
|
||
... = n + k : {H3⁻¹}
|
||
... = m : Hk)),
|
||
or.intro_left _ Hlt)
|
||
|
||
theorem succ_le_left {n m : ℕ} (H1 : n ≤ m) (H2 : n ≠ m) : succ n ≤ m
|
||
:= or_resolve_left (succ_le_left_or H1) H2
|
||
|
||
theorem succ_le_right_inv {n m : ℕ} (H : n ≤ succ m) : n ≤ m ∨ n = succ m
|
||
:= or_of_or_of_imp_of_imp (succ_le_left_or H)
|
||
(take H2 : succ n ≤ succ m, show n ≤ m, from succ_le_cancel H2)
|
||
(take H2 : n = succ m, H2)
|
||
|
||
theorem succ_le_left_inv {n m : ℕ} (H : succ n ≤ m) : n ≤ m ∧ n ≠ m
|
||
:= obtain (k : ℕ) (H2 : succ n + k = m), from (le_elim H),
|
||
and.intro
|
||
(have H3 : n + succ k = m,
|
||
from calc
|
||
n + succ k = succ n + k : symm (succ_add_eq_add_succ n k)
|
||
... = m : H2,
|
||
show n ≤ m, from le_intro H3)
|
||
(assume H3 : n = m,
|
||
have H4 : succ n ≤ n, from subst (symm H3) H,
|
||
have H5 : succ n = n, from le_antisym H4 (self_le_succ n),
|
||
show false, from absurd H5 (succ_ne_self n))
|
||
|
||
theorem le_pred_self (n : ℕ) : pred n ≤ n
|
||
:= case n
|
||
(subst (symm pred_zero) (le_refl 0))
|
||
(take k : ℕ, subst (symm (pred_succ k)) (self_le_succ k))
|
||
|
||
theorem pred_le {n m : ℕ} (H : n ≤ m) : pred n ≤ pred m
|
||
:= discriminate
|
||
(take Hn : n = 0,
|
||
have H2 : pred n = 0,
|
||
from calc
|
||
pred n = pred 0 : {Hn}
|
||
... = 0 : pred_zero,
|
||
subst (symm H2) (zero_le (pred m)))
|
||
(take k : ℕ,
|
||
assume Hn : n = succ k,
|
||
obtain (l : ℕ) (Hl : n + l = m), from le_elim H,
|
||
have H2 : pred n + l = pred m,
|
||
from calc
|
||
pred n + l = pred (succ k) + l : {Hn}
|
||
... = k + l : {pred_succ k}
|
||
... = pred (succ (k + l)) : symm (pred_succ (k + l))
|
||
... = pred (succ k + l) : {symm (succ_add k l)}
|
||
... = pred (n + l) : {symm Hn}
|
||
... = pred m : {Hl},
|
||
le_intro H2)
|
||
|
||
theorem pred_le_left_inv {n m : ℕ} (H : pred n ≤ m) : n ≤ m ∨ n = succ m
|
||
:= discriminate
|
||
(take Hn : n = 0,
|
||
or.intro_left _ (subst (symm Hn) (zero_le m)))
|
||
(take k : ℕ,
|
||
assume Hn : n = succ k,
|
||
have H2 : pred n = k,
|
||
from calc
|
||
pred n = pred (succ k) : {Hn}
|
||
... = k : pred_succ k,
|
||
have H3 : k ≤ m, from subst H2 H,
|
||
have H4 : succ k ≤ m ∨ k = m, from succ_le_left_or H3,
|
||
show n ≤ m ∨ n = succ m, from
|
||
or_of_or_of_imp_of_imp H4
|
||
(take H5 : succ k ≤ m, show n ≤ m, from subst (symm Hn) H5)
|
||
(take H5 : k = m, show n = succ m, from subst H5 Hn))
|
||
|
||
-- ### interaction with successor and predecessor
|
||
|
||
theorem le_imp_succ_le_or_eq {n m : ℕ} (H : n ≤ m) : succ n ≤ m ∨ n = m
|
||
:=
|
||
obtain (k : ℕ) (Hk : n + k = m), from (le_elim H),
|
||
discriminate
|
||
(assume H3 : k = 0,
|
||
have Heq : n = m,
|
||
from calc
|
||
n = n + 0 : symm (add_zero n)
|
||
... = n + k : {symm H3}
|
||
... = m : Hk,
|
||
or.intro_right _ Heq)
|
||
(take l : nat,
|
||
assume H3 : k = succ l,
|
||
have Hlt : succ n ≤ m, from
|
||
(le_intro
|
||
(calc
|
||
succ n + l = n + succ l : succ_add_eq_add_succ n l
|
||
... = n + k : {symm H3}
|
||
... = m : Hk)),
|
||
or.intro_left _ Hlt)
|
||
|
||
theorem le_ne_imp_succ_le {n m : ℕ} (H1 : n ≤ m) (H2 : n ≠ m) : succ n ≤ m
|
||
:= or_resolve_left (le_imp_succ_le_or_eq H1) H2
|
||
|
||
theorem le_succ_imp_le_or_eq {n m : ℕ} (H : n ≤ succ m) : n ≤ m ∨ n = succ m
|
||
:= or_of_or_of_imp_left (le_imp_succ_le_or_eq H)
|
||
(take H2 : succ n ≤ succ m, show n ≤ m, from succ_le_cancel H2)
|
||
|
||
theorem succ_le_imp_le_and_ne {n m : ℕ} (H : succ n ≤ m) : n ≤ m ∧ n ≠ m
|
||
:=
|
||
and.intro
|
||
(le_trans (self_le_succ n) H)
|
||
(assume H2 : n = m,
|
||
have H3 : succ n ≤ n, from subst (symm H2) H,
|
||
have H4 : succ n = n, from le_antisym H3 (self_le_succ n),
|
||
show false, from absurd H4 (succ_ne_self n))
|
||
|
||
theorem pred_le_self (n : ℕ) : pred n ≤ n
|
||
:=
|
||
case n
|
||
(subst (symm pred_zero) (le_refl 0))
|
||
(take k : nat, subst (symm (pred_succ k)) (self_le_succ k))
|
||
|
||
theorem pred_le_imp_le_or_eq {n m : ℕ} (H : pred n ≤ m) : n ≤ m ∨ n = succ m
|
||
:=
|
||
discriminate
|
||
(take Hn : n = 0,
|
||
or.intro_left _ (subst (symm Hn) (zero_le m)))
|
||
(take k : nat,
|
||
assume Hn : n = succ k,
|
||
have H2 : pred n = k,
|
||
from calc
|
||
pred n = pred (succ k) : {Hn}
|
||
... = k : pred_succ k,
|
||
have H3 : k ≤ m, from subst H2 H,
|
||
have H4 : succ k ≤ m ∨ k = m, from le_imp_succ_le_or_eq H3,
|
||
show n ≤ m ∨ n = succ m, from
|
||
or_of_or_of_imp_of_imp H4
|
||
(take H5 : succ k ≤ m, show n ≤ m, from subst (symm Hn) H5)
|
||
(take H5 : k = m, show n = succ m, from subst H5 Hn))
|
||
|
||
---------- interaction with mul
|
||
|
||
theorem mul_le_left {n m : ℕ} (H : n ≤ m) (k : ℕ) : k * n ≤ k * m
|
||
:=
|
||
obtain (l : ℕ) (Hl : n + l = m), from (le_elim H),
|
||
induction_on k
|
||
(have H2 : 0 * n = 0 * m,
|
||
from calc
|
||
0 * n = 0 : mul_zero_left n
|
||
... = 0 * m : symm (mul_zero_left m),
|
||
show 0 * n ≤ 0 * m, from subst H2 (le_refl (0 * n)))
|
||
(take (l : ℕ),
|
||
assume IH : l * n ≤ l * m,
|
||
have H2 : l * n + n ≤ l * m + m, from add_le IH H,
|
||
have H3 : succ l * n ≤ l * m + m, from subst (symm (mul_succ_left l n)) H2,
|
||
show succ l * n ≤ succ l * m, from subst (symm (mul_succ_left l m)) H3)
|
||
|
||
theorem mul_le_right {n m : ℕ} (H : n ≤ m) (k : ℕ) : n * k ≤ m * k
|
||
:= mul_comm k m ▸ mul_comm k n ▸ (mul_le_left H k)
|
||
|
||
theorem mul_le {n m k l : ℕ} (H1 : n ≤ k) (H2 : m ≤ l) : n * m ≤ k * l
|
||
:= le_trans (mul_le_right H1 m) (mul_le_left H2 k)
|
||
|
||
-- mul_le_[left|right]_inv below
|
||
|
||
-------------------------------------------------- lt
|
||
|
||
definition lt (n m : ℕ) := succ n ≤ m
|
||
infix `<` := lt
|
||
|
||
theorem lt_intro {n m k : ℕ} (H : succ n + k = m) : n < m
|
||
:= le_intro H
|
||
|
||
theorem lt_elim {n m : ℕ} (H : n < m) : ∃ k, succ n + k = m
|
||
:= le_elim H
|
||
|
||
theorem lt_intro2 (n m : ℕ) : n < n + succ m
|
||
:= lt_intro (succ_add_eq_add_succ n m)
|
||
|
||
-------------------------------------------------- ge, gt
|
||
|
||
definition ge (n m : ℕ) := m ≤ n
|
||
infix `>=` := ge
|
||
infix `≥` := ge
|
||
|
||
definition gt (n m : ℕ) := m < n
|
||
infix `>` := gt
|
||
|
||
---------- basic facts
|
||
|
||
theorem lt_ne {n m : ℕ} (H : n < m) : n ≠ m
|
||
:= and.elim_right (succ_le_left_inv H)
|
||
|
||
theorem lt_irrefl (n : ℕ) : ¬ n < n
|
||
:= assume H : n < n, absurd (eq.refl n) (lt_ne H)
|
||
|
||
theorem lt_zero (n : ℕ) : 0 < succ n
|
||
:= succ_le (zero_le n)
|
||
|
||
theorem lt_zero_inv (n : ℕ) : ¬ n < 0
|
||
:= assume H : n < 0,
|
||
have H2 : succ n = 0, from le_zero_inv H,
|
||
absurd H2 (succ_ne_zero n)
|
||
|
||
theorem lt_positive {n m : ℕ} (H : n < m) : ∃k, m = succ k
|
||
:= discriminate
|
||
(take (Hm : m = 0), absurd (subst Hm H) (lt_zero_inv n))
|
||
(take (l : ℕ) (Hm : m = succ l), exists.intro l Hm)
|
||
|
||
---------- interaction with le
|
||
|
||
theorem lt_imp_le_succ {n m : ℕ} (H : n < m) : succ n ≤ m
|
||
:= H
|
||
|
||
theorem le_succ_imp_lt {n m : ℕ} (H : succ n ≤ m) : n < m
|
||
:= H
|
||
|
||
theorem self_lt_succ (n : ℕ) : n < succ n
|
||
:= le_refl (succ n)
|
||
|
||
theorem lt_imp_le {n m : ℕ} (H : n < m) : n ≤ m
|
||
:= and.elim_left (succ_le_imp_le_and_ne H)
|
||
|
||
theorem le_imp_lt_or_eq {n m : ℕ} (H : n ≤ m) : n < m ∨ n = m
|
||
:= le_imp_succ_le_or_eq H
|
||
|
||
theorem le_ne_imp_lt {n m : ℕ} (H1 : n ≤ m) (H2 : n ≠ m) : n < m
|
||
:= le_ne_imp_succ_le H1 H2
|
||
|
||
theorem le_imp_lt_succ {n m : ℕ} (H : n ≤ m) : n < succ m
|
||
:= succ_le H
|
||
|
||
theorem lt_succ_imp_le {n m : ℕ} (H : n < succ m) : n ≤ m
|
||
:= succ_le_cancel H
|
||
|
||
---------- trans, antisym
|
||
|
||
theorem lt_le_trans {n m k : ℕ} (H1 : n < m) (H2 : m ≤ k) : n < k
|
||
:= le_trans H1 H2
|
||
|
||
theorem le_lt_trans {n m k : ℕ} (H1 : n ≤ m) (H2 : m < k) : n < k
|
||
:= le_trans (succ_le H1) H2
|
||
|
||
theorem lt_trans {n m k : ℕ} (H1 : n < m) (H2 : m < k) : n < k
|
||
:= lt_le_trans H1 (lt_imp_le H2)
|
||
|
||
theorem le_imp_not_gt {n m : ℕ} (H : n ≤ m) : ¬ n > m
|
||
:= assume H2 : m < n, absurd (le_lt_trans H H2) (lt_irrefl n)
|
||
|
||
theorem lt_imp_not_ge {n m : ℕ} (H : n < m) : ¬ n ≥ m
|
||
:= assume H2 : m ≤ n, absurd (lt_le_trans H H2) (lt_irrefl n)
|
||
|
||
theorem lt_antisym {n m : ℕ} (H : n < m) : ¬ m < n
|
||
:= le_imp_not_gt (lt_imp_le H)
|
||
|
||
---------- interaction with add
|
||
|
||
theorem add_lt_left {n m : ℕ} (H : n < m) (k : ℕ) : k + n < k + m
|
||
:= add_succ k n ▸ add_le_left H k
|
||
|
||
theorem add_lt_right {n m : ℕ} (H : n < m) (k : ℕ) : n + k < m + k
|
||
:= add_comm k m ▸ add_comm k n ▸ add_lt_left H k
|
||
|
||
theorem add_le_lt {n m k l : ℕ} (H1 : n ≤ k) (H2 : m < l) : n + m < k + l
|
||
:= le_lt_trans (add_le_right H1 m) (add_lt_left H2 k)
|
||
|
||
theorem add_lt_le {n m k l : ℕ} (H1 : n < k) (H2 : m ≤ l) : n + m < k + l
|
||
:= lt_le_trans (add_lt_right H1 m) (add_le_left H2 k)
|
||
|
||
theorem add_lt {n m k l : ℕ} (H1 : n < k) (H2 : m < l) : n + m < k + l
|
||
:= add_lt_le H1 (lt_imp_le H2)
|
||
|
||
theorem add_lt_left_inv {n m k : ℕ} (H : k + n < k + m) : n < m
|
||
:= add_le_left_inv ((add_succ k n)⁻¹ ▸ H)
|
||
|
||
theorem add_lt_right_inv {n m k : ℕ} (H : n + k < m + k) : n < m
|
||
:= add_lt_left_inv (add_comm m k ▸ add_comm n k ▸ H)
|
||
|
||
---------- interaction with succ (see also the interaction with le)
|
||
|
||
theorem succ_lt {n m : ℕ} (H : n < m) : succ n < succ m
|
||
:= add_one m ▸ add_one n ▸ add_lt_right H 1
|
||
|
||
theorem succ_lt_inv {n m : ℕ} (H : succ n < succ m) : n < m
|
||
:= add_lt_right_inv ((add_one m)⁻¹ ▸ (add_one n)⁻¹ ▸ H)
|
||
|
||
theorem lt_self_succ (n : ℕ) : n < succ n
|
||
:= le_refl (succ n)
|
||
|
||
theorem succ_lt_right {n m : ℕ} (H : n < m) : n < succ m
|
||
:= lt_trans H (lt_self_succ m)
|
||
|
||
---------- totality of lt and le
|
||
|
||
theorem le_or_lt (n m : ℕ) : n ≤ m ∨ m < n
|
||
:= induction_on n
|
||
(or.intro_left _ (zero_le m))
|
||
(take (k : ℕ),
|
||
assume IH : k ≤ m ∨ m < k,
|
||
or.elim IH
|
||
(assume H : k ≤ m,
|
||
obtain (l : ℕ) (Hl : k + l = m), from le_elim H,
|
||
discriminate
|
||
(assume H2 : l = 0,
|
||
have H3 : m = k,
|
||
from calc
|
||
m = k + l : symm Hl
|
||
... = k + 0 : {H2}
|
||
... = k : add_zero k,
|
||
have H4 : m < succ k, from subst H3 (lt_self_succ m),
|
||
or.intro_right _ H4)
|
||
(take l2 : ℕ,
|
||
assume H2 : l = succ l2,
|
||
have H3 : succ k + l2 = m,
|
||
from calc
|
||
succ k + l2 = k + succ l2 : succ_add_eq_add_succ k l2
|
||
... = k + l : {symm H2}
|
||
... = m : Hl,
|
||
or.intro_left _ (le_intro H3)))
|
||
(assume H : m < k, or.intro_right _ (succ_lt_right H)))
|
||
|
||
theorem trichotomy_alt (n m : ℕ) : (n < m ∨ n = m) ∨ m < n
|
||
:= or_of_or_of_imp_of_imp (le_or_lt n m) (assume H : n ≤ m, le_imp_lt_or_eq H) (assume H : m < n, H)
|
||
|
||
theorem trichotomy (n m : ℕ) : n < m ∨ n = m ∨ m < n
|
||
:= iff.elim_left or.assoc (trichotomy_alt n m)
|
||
|
||
theorem le_total (n m : ℕ) : n ≤ m ∨ m ≤ n
|
||
:= or_of_or_of_imp_of_imp (le_or_lt n m) (assume H : n ≤ m, H) (assume H : m < n, lt_imp_le H)
|
||
|
||
-- interaction with mul under "positivity"
|
||
|
||
theorem strong_induction_on {P : ℕ → Prop} (n : ℕ) (IH : ∀n, (∀m, m < n → P m) → P n) : P n
|
||
:= have stronger : ∀k, k ≤ n → P k, from
|
||
induction_on n
|
||
(take (k : ℕ),
|
||
assume H : k ≤ 0,
|
||
have H2 : k = 0, from le_zero_inv H,
|
||
have H3 : ∀m, m < k → P m, from
|
||
(take m : ℕ,
|
||
assume H4 : m < k,
|
||
have H5 : m < 0, from subst H2 H4,
|
||
absurd H5 (lt_zero_inv m)),
|
||
show P k, from IH k H3)
|
||
(take l : ℕ,
|
||
assume IHl : ∀k, k ≤ l → P k,
|
||
take k : ℕ,
|
||
assume H : k ≤ succ l,
|
||
or.elim (succ_le_right_inv H)
|
||
(assume H2 : k ≤ l, show P k, from IHl k H2)
|
||
(assume H2 : k = succ l,
|
||
have H3 : ∀m, m < k → P m, from
|
||
(take m : ℕ,
|
||
assume H4 : m < k,
|
||
have H5 : m ≤ l, from lt_succ_imp_le (subst H2 H4),
|
||
show P m, from IHl m H5),
|
||
show P k, from IH k H3)),
|
||
stronger n (le_refl n)
|
||
|
||
theorem case_strong_induction_on {P : ℕ → Prop} (a : ℕ) (H0 : P 0) (Hind : ∀(n : ℕ), (∀m, m ≤ n → P m) → P (succ n)) : P a
|
||
:= strong_induction_on a
|
||
(take n, case n
|
||
(assume H : (∀m, m < 0 → P m), H0)
|
||
(take n, assume H : (∀m, m < succ n → P m),
|
||
Hind n (take m, assume H1 : m ≤ n, H m (le_imp_lt_succ H1))))
|
||
|
||
theorem add_eq_self {n m : ℕ} (H : n + m = n) : m = 0
|
||
:= discriminate
|
||
(take Hm : m = 0, Hm)
|
||
(take k : ℕ,
|
||
assume Hm : m = succ k,
|
||
have H2 : succ n + k = n,
|
||
from calc
|
||
succ n + k = n + succ k : succ_add_eq_add_succ n k
|
||
... = n + m : {symm Hm}
|
||
... = n : H,
|
||
have H3 : n < n, from lt_intro H2,
|
||
have H4 : n ≠ n, from lt_ne H3,
|
||
absurd (eq.refl n) H4)
|
||
|
||
-------------------------------------------------- positivity
|
||
|
||
-- we use " _ > 0" as canonical way of denoting that a number is positive
|
||
|
||
---------- basic
|
||
|
||
theorem zero_or_positive (n : ℕ) : n = 0 ∨ n > 0
|
||
:= or_of_or_of_imp_of_imp (or.swap (le_imp_lt_or_eq (zero_le n))) (take H : 0 = n, symm H) (take H : n > 0, H)
|
||
|
||
theorem succ_positive {n m : ℕ} (H : n = succ m) : n > 0
|
||
:= subst (symm H) (lt_zero m)
|
||
|
||
theorem ne_zero_positive {n : ℕ} (H : n ≠ 0) : n > 0
|
||
:= or.elim (zero_or_positive n) (take H2 : n = 0, absurd H2 H) (take H2 : n > 0, H2)
|
||
|
||
theorem pos_imp_eq_succ {n : ℕ} (H : n > 0) : ∃l, n = succ l
|
||
:= discriminate
|
||
(take H2, absurd (subst H2 H) (lt_irrefl 0))
|
||
(take l Hl, exists.intro l Hl)
|
||
|
||
theorem add_positive_right (n : ℕ) {k : ℕ} (H : k > 0) : n + k > n
|
||
:= obtain (l : ℕ) (Hl : k = succ l), from pos_imp_eq_succ H,
|
||
subst (symm Hl) (lt_intro2 n l)
|
||
|
||
theorem add_positive_left (n : ℕ) {k : ℕ} (H : k > 0) : k + n > n
|
||
:= subst (add_comm n k) (add_positive_right n H)
|
||
|
||
|
||
-- Positivity
|
||
-- ---------
|
||
--
|
||
-- Writing "t > 0" is the preferred way to assert that a natural number is positive.
|
||
|
||
-- ### basic
|
||
|
||
-- See also succ_pos.
|
||
|
||
theorem succ_pos (n : ℕ) : 0 < succ n
|
||
:= succ_le (zero_le n)
|
||
|
||
theorem case_zero_pos {P : ℕ → Prop} (y : ℕ) (H0 : P 0) (H1 : ∀y, y > 0 → P y) : P y
|
||
:= case y H0 (take y', H1 _ (succ_pos _))
|
||
|
||
theorem zero_or_pos (n : ℕ) : n = 0 ∨ n > 0
|
||
:= or_of_or_of_imp_left (or.swap (le_imp_lt_or_eq (zero_le n))) (take H : 0 = n, symm H)
|
||
|
||
theorem succ_imp_pos {n m : ℕ} (H : n = succ m) : n > 0
|
||
:= subst (symm H) (succ_pos m)
|
||
|
||
theorem ne_zero_pos {n : ℕ} (H : n ≠ 0) : n > 0
|
||
:= or.elim (zero_or_pos n) (take H2 : n = 0, absurd H2 H) (take H2 : n > 0, H2)
|
||
|
||
theorem add_pos_right (n : ℕ) {k : ℕ} (H : k > 0) : n + k > n
|
||
:= subst (add_zero n) (add_lt_left H n)
|
||
|
||
theorem add_pos_left (n : ℕ) {k : ℕ} (H : k > 0) : k + n > n
|
||
:= subst (add_comm n k) (add_pos_right n H)
|
||
|
||
---------- mul
|
||
|
||
theorem mul_positive {n m : ℕ} (Hn : n > 0) (Hm : m > 0) : n * m > 0
|
||
:= obtain (k : ℕ) (Hk : n = succ k), from pos_imp_eq_succ Hn,
|
||
obtain (l : ℕ) (Hl : m = succ l), from pos_imp_eq_succ Hm,
|
||
succ_positive (calc
|
||
n * m = succ k * m : {Hk}
|
||
... = succ k * succ l : {Hl}
|
||
... = succ k * l + succ k : mul_succ_right (succ k) l
|
||
... = succ (succ k * l + k) : add_succ _ _)
|
||
|
||
theorem mul_positive_inv_left {n m : ℕ} (H : n * m > 0) : n > 0
|
||
:= discriminate
|
||
(assume H2 : n = 0,
|
||
have H3 : n * m = 0,
|
||
from calc
|
||
n * m = 0 * m : {H2}
|
||
... = 0 : mul_zero_left m,
|
||
have H4 : 0 > 0, from subst H3 H,
|
||
absurd H4 (lt_irrefl 0))
|
||
(take l : ℕ,
|
||
assume Hl : n = succ l,
|
||
subst (symm Hl) (lt_zero l))
|
||
|
||
theorem mul_positive_inv_right {n m : ℕ} (H : n * m > 0) : m > 0
|
||
:= mul_positive_inv_left (subst (mul_comm n m) H)
|
||
|
||
theorem mul_left_inj {n m k : ℕ} (Hn : n > 0) (H : n * m = n * k) : m = k
|
||
:=
|
||
have general : ∀m, n * m = n * k → m = k, from
|
||
induction_on k
|
||
(take m:ℕ,
|
||
assume H : n * m = n * 0,
|
||
have H2 : n * m = 0,
|
||
from calc
|
||
n * m = n * 0 : H
|
||
... = 0 : mul_zero_right n,
|
||
have H3 : n = 0 ∨ m = 0, from mul_eq_zero H2,
|
||
or_resolve_right H3 (ne.symm (lt_ne Hn)))
|
||
(take (l : ℕ),
|
||
assume (IH : ∀ m, n * m = n * l → m = l),
|
||
take (m : ℕ),
|
||
assume (H : n * m = n * succ l),
|
||
have H2 : n * succ l > 0, from mul_positive Hn (lt_zero l),
|
||
have H3 : m > 0, from mul_positive_inv_right (subst (symm H) H2),
|
||
obtain (l2:ℕ) (Hm : m = succ l2), from pos_imp_eq_succ H3,
|
||
have H4 : n * l2 + n = n * l + n,
|
||
from calc
|
||
n * l2 + n = n * succ l2 : symm (mul_succ_right n l2)
|
||
... = n * m : {symm Hm}
|
||
... = n * succ l : H
|
||
... = n * l + n : mul_succ_right n l,
|
||
have H5 : n * l2 = n * l, from add_cancel_right H4,
|
||
calc
|
||
m = succ l2 : Hm
|
||
... = succ l : {IH l2 H5}),
|
||
general m H
|
||
|
||
theorem mul_right_inj {n m k : ℕ} (Hm : m > 0) (H : n * m = k * m) : n = k
|
||
:= mul_left_inj Hm (subst (mul_comm k m) (subst (mul_comm n m) H))
|
||
|
||
-- mul_eq_one below
|
||
|
||
---------- interaction of mul with le and lt
|
||
|
||
|
||
theorem mul_lt_left {n m k : ℕ} (Hk : k > 0) (H : n < m) : k * n < k * m
|
||
:=
|
||
have H2 : k * n < k * n + k, from add_positive_right (k * n) Hk,
|
||
have H3 : k * n + k ≤ k * m, from subst (mul_succ_right k n) (mul_le_left H k),
|
||
lt_le_trans H2 H3
|
||
|
||
theorem mul_lt_right {n m k : ℕ} (Hk : k > 0) (H : n < m) : n * k < m * k
|
||
:= subst (mul_comm k m) (subst (mul_comm k n) (mul_lt_left Hk H))
|
||
|
||
theorem mul_le_lt {n m k l : ℕ} (Hk : k > 0) (H1 : n ≤ k) (H2 : m < l) : n * m < k * l
|
||
:= le_lt_trans (mul_le_right H1 m) (mul_lt_left Hk H2)
|
||
|
||
theorem mul_lt_le {n m k l : ℕ} (Hl : l > 0) (H1 : n < k) (H2 : m ≤ l) : n * m < k * l
|
||
:= le_lt_trans (mul_le_left H2 n) (mul_lt_right Hl H1)
|
||
|
||
theorem mul_lt {n m k l : ℕ} (H1 : n < k) (H2 : m < l) : n * m < k * l
|
||
:=
|
||
have H3 : n * m ≤ k * m, from mul_le_right (lt_imp_le H1) m,
|
||
have H4 : k * m < k * l, from mul_lt_left (le_lt_trans (zero_le n) H1) H2,
|
||
le_lt_trans H3 H4
|
||
|
||
theorem mul_lt_left_inv {n m k : ℕ} (H : k * n < k * m) : n < m
|
||
:=
|
||
have general : ∀ m, k * n < k * m → n < m, from
|
||
induction_on n
|
||
(take m : ℕ,
|
||
assume H2 : k * 0 < k * m,
|
||
have H3 : 0 < k * m, from mul_zero_right k ▸ H2,
|
||
show 0 < m, from mul_positive_inv_right H3)
|
||
(take l : ℕ,
|
||
assume IH : ∀ m, k * l < k * m → l < m,
|
||
take m : ℕ,
|
||
assume H2 : k * succ l < k * m,
|
||
have H3 : 0 < k * m, from le_lt_trans (zero_le _) H2,
|
||
have H4 : 0 < m, from mul_positive_inv_right H3,
|
||
obtain (l2 : ℕ) (Hl2 : m = succ l2), from pos_imp_eq_succ H4,
|
||
have H5 : k * l + k < k * m, from mul_succ_right k l ▸ H2,
|
||
have H6 : k * l + k < k * succ l2, from Hl2 ▸ H5,
|
||
have H7 : k * l + k < k * l2 + k, from mul_succ_right k l2 ▸ H6,
|
||
have H8 : k * l < k * l2, from add_lt_right_inv H7,
|
||
have H9 : l < l2, from IH l2 H8,
|
||
have H10 : succ l < succ l2, from succ_lt H9,
|
||
show succ l < m, from Hl2⁻¹ ▸ H10),
|
||
general m H
|
||
|
||
theorem mul_lt_right_inv {n m k : ℕ} (H : n * k < m * k) : n < m
|
||
:= mul_lt_left_inv (mul_comm m k ▸ mul_comm n k ▸ H)
|
||
|
||
theorem mul_le_left_inv {n m k : ℕ} (H : succ k * n ≤ succ k * m) : n ≤ m
|
||
:=
|
||
have H2 : succ k * n < succ k * m + succ k, from le_lt_trans H (lt_intro2 _ _),
|
||
have H3 : succ k * n < succ k * succ m, from subst (symm (mul_succ_right (succ k) m)) H2,
|
||
have H4 : n < succ m, from mul_lt_left_inv H3,
|
||
show n ≤ m, from lt_succ_imp_le H4
|
||
|
||
theorem mul_le_right_inv {n m k : ℕ} (H : n * succ m ≤ k * succ m) : n ≤ k
|
||
:= mul_le_left_inv (subst (mul_comm k (succ m)) (subst (mul_comm n (succ m)) H))
|
||
|
||
theorem mul_eq_one_left {n m : ℕ} (H : n * m = 1) : n = 1
|
||
:=
|
||
have H2 : n * m > 0, from subst (symm H) (lt_zero 0),
|
||
have H3 : n > 0, from mul_positive_inv_left H2,
|
||
have H4 : m > 0, from mul_positive_inv_right H2,
|
||
or.elim (le_or_lt n 1)
|
||
(assume H5 : n ≤ 1,
|
||
show n = 1, from le_antisym H5 H3)
|
||
(assume H5 : n > 1,
|
||
have H6 : n * m ≥ 2 * 1, from mul_le H5 H4,
|
||
have H7 : 1 ≥ 2, from subst (mul_one_right 2) (subst H H6),
|
||
absurd (self_lt_succ 1) (le_imp_not_gt H7))
|
||
|
||
theorem mul_eq_one_right {n m : ℕ} (H : n * m = 1) : m = 1
|
||
:= mul_eq_one_left (subst (mul_comm n m) H)
|
||
|
||
theorem mul_eq_one {n m : ℕ} (H : n * m = 1) : n = 1 ∧ m = 1
|
||
:= and.intro (mul_eq_one_left H) (mul_eq_one_right H)
|
||
|
||
-------------------------------------------------- sub
|
||
|
||
definition sub (n m : ℕ) : ℕ := nat.rec n (fun m x, pred x) m
|
||
infixl `-` := sub
|
||
theorem sub_zero_right (n : ℕ) : n - 0 = n
|
||
theorem sub_succ_right (n m : ℕ) : n - succ m = pred (n - m)
|
||
|
||
theorem sub_zero_left (n : ℕ) : 0 - n = 0
|
||
:= induction_on n (sub_zero_right 0)
|
||
(take k : ℕ,
|
||
assume IH : 0 - k = 0,
|
||
calc
|
||
0 - succ k = pred (0 - k) : sub_succ_right 0 k
|
||
... = pred 0 : {IH}
|
||
... = 0 : pred_zero)
|
||
|
||
theorem sub_succ_succ (n m : ℕ) : succ n - succ m = n - m
|
||
:= induction_on m
|
||
(calc
|
||
succ n - 1 = pred (succ n - 0) : sub_succ_right (succ n) 0
|
||
... = pred (succ n) : {sub_zero_right (succ n)}
|
||
... = n : pred_succ n
|
||
... = n - 0 : symm (sub_zero_right n))
|
||
(take k : ℕ,
|
||
assume IH : succ n - succ k = n - k,
|
||
calc
|
||
succ n - succ (succ k) = pred (succ n - succ k) : sub_succ_right (succ n) (succ k)
|
||
... = pred (n - k) : {IH}
|
||
... = n - succ k : symm (sub_succ_right n k))
|
||
|
||
theorem sub_one (n : ℕ) : n - 1 = pred n
|
||
:= calc
|
||
n - 1 = pred (n - 0) : sub_succ_right n 0
|
||
... = pred n : {sub_zero_right n}
|
||
|
||
theorem sub_self (n : ℕ) : n - n = 0
|
||
:= induction_on n (sub_zero_right 0) (take k IH, trans (sub_succ_succ k k) IH)
|
||
|
||
theorem sub_add_add_right (n m k : ℕ) : (n + k) - (m + k) = n - m
|
||
:= induction_on k
|
||
(calc
|
||
(n + 0) - (m + 0) = n - (m + 0) : {add_zero _}
|
||
... = n - m : {add_zero _})
|
||
(take l : ℕ,
|
||
assume IH : (n + l) - (m + l) = n - m,
|
||
calc
|
||
(n + succ l) - (m + succ l) = succ (n + l) - (m + succ l) : {add_succ _ _}
|
||
... = succ (n + l) - succ (m + l) : {add_succ _ _}
|
||
... = (n + l) - (m + l) : sub_succ_succ _ _
|
||
... = n - m : IH)
|
||
|
||
theorem sub_add_add_left (n m k : ℕ) : (k + n) - (k + m) = n - m
|
||
:= subst (add_comm m k) (subst (add_comm n k) (sub_add_add_right n m k))
|
||
|
||
theorem sub_add_left (n m : ℕ) : n + m - m = n
|
||
:= induction_on m
|
||
(subst (symm (add_zero n)) (sub_zero_right n))
|
||
(take k : ℕ,
|
||
assume IH : n + k - k = n,
|
||
calc
|
||
n + succ k - succ k = succ (n + k) - succ k : {add_succ n k}
|
||
... = n + k - k : sub_succ_succ _ _
|
||
... = n : IH)
|
||
|
||
theorem sub_sub (n m k : ℕ) : n - m - k = n - (m + k)
|
||
:= induction_on k
|
||
(calc
|
||
n - m - 0 = n - m : sub_zero_right _
|
||
... = n - (m + 0) : {symm (add_zero m)})
|
||
(take l : ℕ,
|
||
assume IH : n - m - l = n - (m + l),
|
||
calc
|
||
n - m - succ l = pred (n - m - l) : sub_succ_right (n - m) l
|
||
... = pred (n - (m + l)) : {IH}
|
||
... = n - succ (m + l) : symm (sub_succ_right n (m + l))
|
||
... = n - (m + succ l) : {symm (add_succ m l)})
|
||
|
||
theorem succ_sub_sub (n m k : ℕ) : succ n - m - succ k = n - m - k
|
||
:= calc
|
||
succ n - m - succ k = succ n - (m + succ k) : sub_sub _ _ _
|
||
... = succ n - succ (m + k) : {add_succ m k}
|
||
... = n - (m + k) : sub_succ_succ _ _
|
||
... = n - m - k : symm (sub_sub n m k)
|
||
|
||
theorem sub_add_right_eq_zero (n m : ℕ) : n - (n + m) = 0
|
||
:= calc
|
||
n - (n + m) = n - n - m : symm (sub_sub n n m)
|
||
... = 0 - m : {sub_self n}
|
||
... = 0 : sub_zero_left m
|
||
|
||
theorem sub_comm (m n k : ℕ) : m - n - k = m - k - n
|
||
:= calc
|
||
m - n - k = m - (n + k) : sub_sub m n k
|
||
... = m - (k + n) : {add_comm n k}
|
||
... = m - k - n : symm (sub_sub m k n)
|
||
|
||
theorem succ_sub_one (n : ℕ) : succ n - 1 = n
|
||
:= sub_succ_succ n 0 ⬝ sub_zero_right n
|
||
|
||
---------- mul
|
||
|
||
theorem mul_pred_left (n m : ℕ) : pred n * m = n * m - m
|
||
:= induction_on n
|
||
(calc
|
||
pred 0 * m = 0 * m : {pred_zero}
|
||
... = 0 : mul_zero_left _
|
||
... = 0 - m : symm (sub_zero_left m)
|
||
... = 0 * m - m : {symm (mul_zero_left m)})
|
||
(take k : ℕ,
|
||
assume IH : pred k * m = k * m - m,
|
||
calc
|
||
pred (succ k) * m = k * m : {pred_succ k}
|
||
... = k * m + m - m : symm (sub_add_left _ _)
|
||
... = succ k * m - m : {symm (mul_succ_left k m)})
|
||
|
||
theorem mul_pred_right (n m : ℕ) : n * pred m = n * m - n
|
||
:= calc n * pred m = pred m * n : mul_comm _ _
|
||
... = m * n - n : mul_pred_left m n
|
||
... = n * m - n : {mul_comm m n}
|
||
|
||
theorem mul_sub_distr_left (n m k : ℕ) : (n - m) * k = n * k - m * k
|
||
:= induction_on m
|
||
(calc
|
||
(n - 0) * k = n * k : {sub_zero_right n}
|
||
... = n * k - 0 : symm (sub_zero_right _)
|
||
... = n * k - 0 * k : {symm (mul_zero_left _)})
|
||
(take l : ℕ,
|
||
assume IH : (n - l) * k = n * k - l * k,
|
||
calc
|
||
(n - succ l) * k = pred (n - l) * k : {sub_succ_right n l}
|
||
... = (n - l) * k - k : mul_pred_left _ _
|
||
... = n * k - l * k - k : {IH}
|
||
... = n * k - (l * k + k) : sub_sub _ _ _
|
||
... = n * k - (succ l * k) : {symm (mul_succ_left l k)})
|
||
|
||
theorem mul_sub_distr_right (n m k : ℕ) : n * (m - k) = n * m - n * k
|
||
:= calc
|
||
n * (m - k) = (m - k) * n : mul_comm _ _
|
||
... = m * n - k * n : mul_sub_distr_left _ _ _
|
||
... = n * m - k * n : {mul_comm _ _}
|
||
... = n * m - n * k : {mul_comm _ _}
|
||
|
||
-------------------------------------------------- max, min, iteration, maybe: sub, div
|
||
|
||
theorem succ_sub {m n : ℕ} : m ≥ n → succ m - n = succ (m - n)
|
||
:= sub_induction n m
|
||
(take k,
|
||
assume H : 0 ≤ k,
|
||
calc
|
||
succ k - 0 = succ k : sub_zero_right (succ k)
|
||
... = succ (k - 0) : {symm (sub_zero_right k)})
|
||
(take k,
|
||
assume H : succ k ≤ 0,
|
||
absurd H (not_succ_zero_le k))
|
||
(take k l,
|
||
assume IH : k ≤ l → succ l - k = succ (l - k),
|
||
take H : succ k ≤ succ l,
|
||
calc
|
||
succ (succ l) - succ k = succ l - k : sub_succ_succ (succ l) k
|
||
... = succ (l - k) : IH (succ_le_cancel H)
|
||
... = succ (succ l - succ k) : {symm (sub_succ_succ l k)})
|
||
|
||
theorem le_imp_sub_eq_zero {n m : ℕ} (H : n ≤ m) : n - m = 0
|
||
:= obtain (k : ℕ) (Hk : n + k = m), from le_elim H, subst Hk (sub_add_right_eq_zero n k)
|
||
|
||
theorem add_sub_le {n m : ℕ} : n ≤ m → n + (m - n) = m
|
||
:= sub_induction n m
|
||
(take k,
|
||
assume H : 0 ≤ k,
|
||
calc
|
||
0 + (k - 0) = k - 0 : zero_add (k - 0)
|
||
... = k : sub_zero_right k)
|
||
(take k, assume H : succ k ≤ 0, absurd H (not_succ_zero_le k))
|
||
(take k l,
|
||
assume IH : k ≤ l → k + (l - k) = l,
|
||
take H : succ k ≤ succ l,
|
||
calc
|
||
succ k + (succ l - succ k) = succ k + (l - k) : {sub_succ_succ l k}
|
||
... = succ (k + (l - k)) : succ_add k (l - k)
|
||
... = succ l : {IH (succ_le_cancel H)})
|
||
|
||
theorem add_sub_ge_left {n m : ℕ} : n ≥ m → n - m + m = n
|
||
:= subst (add_comm m (n - m)) add_sub_le
|
||
|
||
theorem add_sub_ge {n m : ℕ} (H : n ≥ m) : n + (m - n) = n
|
||
:= calc
|
||
n + (m - n) = n + 0 : {le_imp_sub_eq_zero H}
|
||
... = n : add_zero n
|
||
|
||
theorem add_sub_le_left {n m : ℕ} : n ≤ m → n - m + m = m
|
||
:= subst (add_comm m (n - m)) add_sub_ge
|
||
|
||
theorem le_add_sub_left (n m : ℕ) : n ≤ n + (m - n)
|
||
:= or.elim (le_total n m)
|
||
(assume H : n ≤ m, subst (symm (add_sub_le H)) H)
|
||
(assume H : m ≤ n, subst (symm (add_sub_ge H)) (le_refl n))
|
||
|
||
theorem le_add_sub_right (n m : ℕ) : m ≤ n + (m - n)
|
||
:= or.elim (le_total n m)
|
||
(assume H : n ≤ m, subst (symm (add_sub_le H)) (le_refl m))
|
||
(assume H : m ≤ n, subst (symm (add_sub_ge H)) H)
|
||
|
||
theorem sub_split {P : ℕ → Prop} {n m : ℕ} (H1 : n ≤ m → P 0) (H2 : ∀k, m + k = n -> P k)
|
||
: P (n - m)
|
||
:= or.elim (le_total n m)
|
||
(assume H3 : n ≤ m, subst (symm (le_imp_sub_eq_zero H3)) (H1 H3))
|
||
(assume H3 : m ≤ n, H2 (n - m) (add_sub_le H3))
|
||
|
||
theorem sub_le_self (n m : ℕ) : n - m ≤ n
|
||
:=
|
||
sub_split
|
||
(assume H : n ≤ m, zero_le n)
|
||
(take k : ℕ, assume H : m + k = n, le_intro (subst (add_comm m k) H))
|
||
|
||
theorem le_elim_sub (n m : ℕ) (H : n ≤ m) : ∃k, m - k = n
|
||
:=
|
||
obtain (k : ℕ) (Hk : n + k = m), from le_elim H,
|
||
exists.intro k
|
||
(calc
|
||
m - k = n + k - k : {symm Hk}
|
||
... = n : sub_add_left n k)
|
||
|
||
theorem add_sub_assoc {m k : ℕ} (H : k ≤ m) (n : ℕ) : n + m - k = n + (m - k)
|
||
:= have l1 : k ≤ m → n + m - k = n + (m - k), from
|
||
sub_induction k m
|
||
(take m : ℕ,
|
||
assume H : 0 ≤ m,
|
||
calc
|
||
n + m - 0 = n + m : sub_zero_right (n + m)
|
||
... = n + (m - 0) : {symm (sub_zero_right m)})
|
||
(take k : ℕ, assume H : succ k ≤ 0, absurd H (not_succ_zero_le k))
|
||
(take k m,
|
||
assume IH : k ≤ m → n + m - k = n + (m - k),
|
||
take H : succ k ≤ succ m,
|
||
calc
|
||
n + succ m - succ k = succ (n + m) - succ k : {add_succ n m}
|
||
... = n + m - k : sub_succ_succ (n + m) k
|
||
... = n + (m - k) : IH (succ_le_cancel H)
|
||
... = n + (succ m - succ k) : {symm (sub_succ_succ m k)}),
|
||
l1 H
|
||
|
||
theorem sub_eq_zero_imp_le {n m : ℕ} : n - m = 0 → n ≤ m
|
||
:= sub_split
|
||
(assume H1 : n ≤ m, assume H2 : 0 = 0, H1)
|
||
(take k : ℕ,
|
||
assume H1 : m + k = n,
|
||
assume H2 : k = 0,
|
||
have H3 : n = m, from subst (add_zero m) (subst H2 (symm H1)),
|
||
subst H3 (le_refl n))
|
||
|
||
theorem sub_sub_split {P : ℕ → ℕ → Prop} {n m : ℕ} (H1 : ∀k, n = m + k -> P k 0)
|
||
(H2 : ∀k, m = n + k → P 0 k) : P (n - m) (m - n)
|
||
:= or.elim (le_total n m)
|
||
(assume H3 : n ≤ m,
|
||
(le_imp_sub_eq_zero H3)⁻¹ ▸ (H2 (m - n) ((add_sub_le H3)⁻¹)))
|
||
(assume H3 : m ≤ n,
|
||
(le_imp_sub_eq_zero H3)⁻¹ ▸ (H1 (n - m) ((add_sub_le H3)⁻¹)))
|
||
|
||
theorem sub_intro {n m k : ℕ} (H : n + m = k) : k - n = m
|
||
:= have H2 : k - n + n = m + n, from
|
||
calc
|
||
k - n + n = k : add_sub_ge_left (le_intro H)
|
||
... = n + m : symm H
|
||
... = m + n : add_comm n m,
|
||
add_cancel_right H2
|
||
|
||
theorem sub_lt {x y : ℕ} (xpos : x > 0) (ypos : y > 0) : x - y < x
|
||
:= obtain (x' : ℕ) (xeq : x = succ x'), from pos_imp_eq_succ xpos,
|
||
obtain (y' : ℕ) (yeq : y = succ y'), from pos_imp_eq_succ ypos,
|
||
have xsuby_eq : x - y = x' - y', from
|
||
calc
|
||
x - y = succ x' - y : {xeq}
|
||
... = succ x' - succ y' : {yeq}
|
||
... = x' - y' : sub_succ_succ _ _,
|
||
have H1 : x' - y' ≤ x', from sub_le_self _ _,
|
||
have H2 : x' < succ x', from self_lt_succ _,
|
||
show x - y < x, from xeq⁻¹ ▸ xsuby_eq⁻¹ ▸ le_lt_trans H1 H2
|
||
|
||
-- Max, min, iteration, and absolute difference
|
||
-- --------------------------------------------
|
||
|
||
definition max (n m : ℕ) : ℕ := n + (m - n)
|
||
definition min (n m : ℕ) : ℕ := m - (m - n)
|
||
|
||
theorem max_le {n m : ℕ} (H : n ≤ m) : n + (m - n) = m := add_sub_le H
|
||
|
||
theorem max_ge {n m : ℕ} (H : n ≥ m) : n + (m - n) = n := add_sub_ge H
|
||
|
||
theorem left_le_max (n m : ℕ) : n ≤ n + (m - n) := le_add_sub_left n m
|
||
|
||
theorem right_le_max (n m : ℕ) : m ≤ max n m := le_add_sub_right n m
|
||
|
||
-- ### absolute difference
|
||
|
||
-- This section is still incomplete
|
||
|
||
definition dist (n m : ℕ) := (n - m) + (m - n)
|
||
|
||
theorem dist_comm (n m : ℕ) : dist n m = dist m n
|
||
:= add_comm (n - m) (m - n)
|
||
|
||
theorem dist_eq_zero {n m : ℕ} (H : dist n m = 0) : n = m
|
||
:=
|
||
have H2 : n - m = 0, from eq_zero_of_add_eq_zero_right H,
|
||
have H3 : n ≤ m, from sub_eq_zero_imp_le H2,
|
||
have H4 : m - n = 0, from add_eq_zero_right H,
|
||
have H5 : m ≤ n, from sub_eq_zero_imp_le H4,
|
||
le_antisym H3 H5
|
||
|
||
theorem dist_le {n m : ℕ} (H : n ≤ m) : dist n m = m - n
|
||
:= calc
|
||
dist n m = (n - m) + (m - n) : eq.refl _
|
||
... = 0 + (m - n) : {le_imp_sub_eq_zero H}
|
||
... = m - n : zero_add (m - n)
|
||
|
||
theorem dist_ge {n m : ℕ} (H : n ≥ m) : dist n m = n - m
|
||
:= subst (dist_comm m n) (dist_le H)
|
||
|
||
theorem dist_zero_right (n : ℕ) : dist n 0 = n
|
||
:= trans (dist_ge (zero_le n)) (sub_zero_right n)
|
||
|
||
theorem dist_zero_left (n : ℕ) : dist 0 n = n
|
||
:= trans (dist_le (zero_le n)) (sub_zero_right n)
|
||
|
||
theorem dist_intro {n m k : ℕ} (H : n + m = k) : dist k n = m
|
||
:= calc
|
||
dist k n = k - n : dist_ge (le_intro H)
|
||
... = m : sub_intro H
|
||
|
||
theorem dist_add_right (n k m : ℕ) : dist (n + k) (m + k) = dist n m
|
||
:=
|
||
calc
|
||
dist (n + k) (m + k) = ((n+k) - (m+k)) + ((m+k)-(n+k)) : eq.refl _
|
||
... = (n - m) + ((m + k) - (n + k)) : {sub_add_add_right _ _ _}
|
||
... = (n - m) + (m - n) : {sub_add_add_right _ _ _}
|
||
|
||
theorem dist_add_left (k n m : ℕ) : dist (k + n) (k + m) = dist n m
|
||
:= subst (add_comm m k) (subst (add_comm n k) (dist_add_right n k m))
|
||
|
||
theorem dist_ge_add_right {n m : ℕ} (H : n ≥ m) : dist n m + m = n
|
||
:= calc
|
||
dist n m + m = n - m + m : {dist_ge H}
|
||
... = n : add_sub_ge_left H
|
||
|
||
theorem dist_eq_intro {n m k l : ℕ} (H : n + m = k + l) : dist n k = dist l m
|
||
:= calc
|
||
dist n k = dist (n + m) (k + m) : symm (dist_add_right n m k)
|
||
... = dist (k + l) (k + m) : {H}
|
||
... = dist l m : dist_add_left k l m
|
||
|
||
|
||
|
||
end nat
|
||
end experiment
|