lean2/library/data/pnat.lean
2015-09-12 21:46:09 -04:00

329 lines
11 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Robert Y. Lewis
Basic facts about the positive natural numbers.
Developed primarily for use in the construction of . For the most part, the only theorems here
are those needed for that construction.
-/
import data.rat.order data.nat
open nat rat subtype eq.ops
namespace pnat
definition pnat := { n : | n > 0 }
notation `+` := pnat
definition pos (n : ) (H : n > 0) : + := tag n H
definition nat_of_pnat (p : +) : := elt_of p
reserve postfix `~`:std.prec.max_plus
local postfix ~ := nat_of_pnat
theorem pnat_pos (p : +) : p~ > 0 := has_property p
definition add (p q : +) : + :=
tag (p~ + q~) (nat.add_pos (pnat_pos p) (pnat_pos q))
infix `+` := add
definition mul (p q : +) : + :=
tag (p~ * q~) (nat.mul_pos (pnat_pos p) (pnat_pos q))
infix `*` := mul
definition le (p q : +) := p~ ≤ q~
infix `≤` := le
notation p `≥` q := q ≤ p
definition lt (p q : +) := p~ < q~
infix `<` := lt
protected theorem pnat.eq {p q : +} : p~ = q~ → p = q :=
subtype.eq
definition pnat_le_decidable [instance] (p q : +) : decidable (p ≤ q) :=
nat.decidable_le p~ q~
definition pnat_lt_decidable [instance] {p q : +} : decidable (p < q) :=
nat.decidable_lt p~ q~
theorem le.trans {p q r : +} (H1 : p ≤ q) (H2 : q ≤ r) : p ≤ r := nat.le.trans H1 H2
definition max (p q : +) :=
tag (nat.max p~ q~) (nat.lt_of_lt_of_le (!pnat_pos) (!le_max_right))
theorem max_right (a b : +) : max a b ≥ b := !le_max_right
theorem max_left (a b : +) : max a b ≥ a := !le_max_left
theorem max_eq_right {a b : +} (H : a < b) : max a b = b :=
pnat.eq (nat.max_eq_right_of_lt H)
theorem max_eq_left {a b : +} (H : ¬ a < b) : max a b = a :=
pnat.eq (nat.max_eq_left (le_of_not_gt H))
theorem le_of_lt {a b : +} : a < b → a ≤ b := nat.le_of_lt
theorem not_lt_of_ge {a b : +} : a ≤ b → ¬ (b < a) := nat.not_lt_of_ge
theorem le_of_not_gt {a b : +} : ¬ a < b → b ≤ a := nat.le_of_not_gt
theorem eq_of_le_of_ge {a b : +} (H1 : a ≤ b) (H2 : b ≤ a) : a = b :=
pnat.eq (nat.eq_of_le_of_ge H1 H2)
theorem le.refl (a : +) : a ≤ a := !nat.le.refl
notation 2 := (tag 2 dec_trivial : +)
notation 3 := (tag 3 dec_trivial : +)
definition pone : + := tag 1 dec_trivial
definition rat_of_pnat [reducible] (n : +) : := n~
theorem pnat.to_rat_of_nat (n : +) : rat_of_pnat n = of_nat n~ := rfl
-- these will come in rat
theorem rat_of_nat_nonneg (n : ) : 0 ≤ of_nat n := trivial
theorem rat_of_pnat_ge_one (n : +) : rat_of_pnat n ≥ 1 :=
of_nat_le_of_nat_of_le (pnat_pos n)
theorem rat_of_pnat_is_pos (n : +) : rat_of_pnat n > 0 :=
of_nat_lt_of_nat_of_lt (pnat_pos n)
theorem of_nat_le_of_nat_of_le {m n : } (H : m ≤ n) : of_nat m ≤ of_nat n :=
of_nat_le_of_nat_of_le H
theorem of_nat_lt_of_nat_of_lt {m n : } (H : m < n) : of_nat m < of_nat n :=
of_nat_lt_of_nat_of_lt H
theorem rat_of_pnat_le_of_pnat_le {m n : +} (H : m ≤ n) : rat_of_pnat m ≤ rat_of_pnat n :=
of_nat_le_of_nat_of_le H
theorem rat_of_pnat_lt_of_pnat_lt {m n : +} (H : m < n) : rat_of_pnat m < rat_of_pnat n :=
of_nat_lt_of_nat_of_lt H
theorem pnat_le_of_rat_of_pnat_le {m n : +} (H : rat_of_pnat m ≤ rat_of_pnat n) : m ≤ n :=
le_of_of_nat_le_of_nat H
definition inv (n : +) : := (1 : ) / rat_of_pnat n
postfix `⁻¹` := inv
theorem inv_pos (n : +) : n⁻¹ > 0 := one_div_pos_of_pos !rat_of_pnat_is_pos
theorem inv_le_one (n : +) : n⁻¹ ≤ (1 : ) :=
begin
rewrite [↑inv, -one_div_one],
apply one_div_le_one_div_of_le,
apply rat.zero_lt_one,
apply rat_of_pnat_ge_one
end
theorem inv_lt_one_of_gt {n : +} (H : n~ > 1) : n⁻¹ < (1 : ) :=
begin
rewrite [↑inv, -one_div_one],
apply one_div_lt_one_div_of_lt,
apply rat.zero_lt_one,
rewrite pnat.to_rat_of_nat,
apply (of_nat_lt_of_nat_of_lt H)
end
theorem pone_inv : pone⁻¹ = 1 := rfl
theorem add_invs_nonneg (m n : +) : 0 ≤ m⁻¹ + n⁻¹ :=
begin
apply rat.le_of_lt,
apply rat.add_pos,
repeat apply inv_pos
end
theorem one_mul (n : +) : pone * n = n :=
begin
apply pnat.eq,
rewrite [↑pone, ↑mul, ↑nat_of_pnat, one_mul]
end
theorem pone_le (n : +) : pone ≤ n :=
succ_le_of_lt (pnat_pos n)
theorem pnat_to_rat_mul (a b : +) : rat_of_pnat (a * b) = rat_of_pnat a * rat_of_pnat b := rfl
theorem mul_lt_mul_left (a b c : +) (H : a < b) : a * c < b * c :=
nat.mul_lt_mul_of_pos_right H !pnat_pos
theorem one_lt_two : pone < 2 := !nat.le.refl
theorem inv_two_mul_lt_inv (n : +) : (2 * n)⁻¹ < n⁻¹ :=
begin
rewrite ↑inv,
apply one_div_lt_one_div_of_lt,
apply rat_of_pnat_is_pos,
have H : n~ < (2 * n)~, begin
rewrite -one_mul at {1},
apply mul_lt_mul_left,
apply one_lt_two
end,
apply of_nat_lt_of_nat_of_lt,
apply H
end
theorem inv_two_mul_le_inv (n : +) : (2 * n)⁻¹ ≤ n⁻¹ := rat.le_of_lt !inv_two_mul_lt_inv
theorem inv_ge_of_le {p q : +} (H : p ≤ q) : q⁻¹ ≤ p⁻¹ :=
one_div_le_one_div_of_le !rat_of_pnat_is_pos (rat_of_pnat_le_of_pnat_le H)
theorem inv_gt_of_lt {p q : +} (H : p < q) : q⁻¹ < p⁻¹ :=
one_div_lt_one_div_of_lt !rat_of_pnat_is_pos (rat_of_pnat_lt_of_pnat_lt H)
theorem ge_of_inv_le {p q : +} (H : p⁻¹ ≤ q⁻¹) : q ≤ p :=
pnat_le_of_rat_of_pnat_le (le_of_one_div_le_one_div !rat_of_pnat_is_pos H)
theorem two_mul (p : +) : rat_of_pnat (2 * p) = (1 + 1) * rat_of_pnat p :=
by rewrite pnat_to_rat_mul
theorem add_halves (p : +) : (2 * p)⁻¹ + (2 * p)⁻¹ = p⁻¹ :=
begin
rewrite [↑inv, -(@add_halves (1 / (rat_of_pnat p))), rat.div_div_eq_div_mul],
have H : rat_of_pnat (2 * p) = rat_of_pnat p * (1 + 1), by rewrite [rat.mul.comm, two_mul],
rewrite *H
end
theorem add_halves_double (m n : +) :
m⁻¹ + n⁻¹ = ((2 * m)⁻¹ + (2 * n)⁻¹) + ((2 * m)⁻¹ + (2 * n)⁻¹) :=
have hsimp [visible] : ∀ a b : , (a + a) + (b + b) = (a + b) + (a + b),
by intros; rewrite [rat.add.assoc, -(rat.add.assoc a b b), {_+b}rat.add.comm, -*rat.add.assoc],
by rewrite [-add_halves m, -add_halves n, hsimp]
theorem inv_mul_eq_mul_inv {p q : +} : (p * q)⁻¹ = p⁻¹ * q⁻¹ :=
by rewrite [↑inv, pnat_to_rat_mul, one_div_mul_one_div]
theorem inv_mul_le_inv (p q : +) : (p * q)⁻¹ ≤ q⁻¹ :=
begin
rewrite [inv_mul_eq_mul_inv, -{q⁻¹}rat.one_mul at {2}],
apply rat.mul_le_mul,
apply inv_le_one,
apply rat.le.refl,
apply rat.le_of_lt,
apply inv_pos,
apply rat.le_of_lt rat.zero_lt_one
end
theorem pnat_mul_le_mul_left' (a b c : +) (H : a ≤ b) : c * a ≤ c * b :=
nat.mul_le_mul_of_nonneg_left H (nat.le_of_lt !pnat_pos)
theorem mul.assoc (a b c : +) : a * b * c = a * (b * c) :=
pnat.eq !nat.mul.assoc
theorem mul.comm (a b : +) : a * b = b * a :=
pnat.eq !nat.mul.comm
theorem add.assoc (a b c : +) : a + b + c = a + (b + c) :=
pnat.eq !nat.add.assoc
theorem mul_le_mul_left (p q : +) : q ≤ p * q :=
begin
rewrite [-one_mul at {1}, mul.comm, mul.comm p],
apply pnat_mul_le_mul_left',
apply pone_le
end
theorem mul_le_mul_right (p q : +) : p ≤ p * q :=
by rewrite mul.comm; apply mul_le_mul_left
theorem pnat.lt_of_not_le {p q : +} (H : ¬ p ≤ q) : q < p :=
nat.lt_of_not_ge H
theorem inv_cancel_left (p : +) : rat_of_pnat p * p⁻¹ = (1 : ) :=
mul_one_div_cancel (ne.symm (rat.ne_of_lt !rat_of_pnat_is_pos))
theorem inv_cancel_right (p : +) : p⁻¹ * rat_of_pnat p = (1 : ) :=
by rewrite rat.mul.comm; apply inv_cancel_left
theorem lt_add_left (p q : +) : p < p + q :=
begin
have H : p~ < p~ + q~, begin
rewrite -nat.add_zero at {1},
apply nat.add_lt_add_left,
apply pnat_pos
end,
apply H
end
theorem inv_add_lt_left (p q : +) : (p + q)⁻¹ < p⁻¹ :=
by apply inv_gt_of_lt; apply lt_add_left
theorem div_le_pnat (q : ) (n : +) (H : q ≥ n⁻¹) : 1 / q ≤ rat_of_pnat n :=
begin
apply rat.div_le_of_le_mul,
apply rat.lt_of_lt_of_le,
apply inv_pos,
rotate 1,
apply H,
apply rat.le_mul_of_div_le,
apply rat_of_pnat_is_pos,
apply H
end
theorem pnat_cancel' (n m : +) : (n * n * m)⁻¹ * (rat_of_pnat n * rat_of_pnat n) = m⁻¹ :=
assert hsimp : ∀ a b c : , (a * a * (b * b * c)) = (a * b) * (a * b) * c, from
λa b c, by rewrite[-*rat.mul.assoc]; exact (!rat.mul.right_comm ▸ rfl),
by rewrite [rat.mul.comm, *inv_mul_eq_mul_inv, hsimp, *inv_cancel_left, *rat.one_mul]
definition pceil (a : ) : + := tag (ubound a) !ubound_pos
theorem pceil_helper {a : } {n : +} (H : pceil a ≤ n) (Ha : a > 0) : n⁻¹ ≤ 1 / a :=
rat.le.trans (inv_ge_of_le H) (one_div_le_one_div_of_le Ha (ubound_ge a))
theorem inv_pceil_div (a b : ) (Ha : a > 0) (Hb : b > 0) : (pceil (a / b))⁻¹ ≤ b / a :=
!one_div_one_div ▸ one_div_le_one_div_of_le
(one_div_pos_of_pos (div_pos_of_pos_of_pos Hb Ha))
(!div_div_eq_mul_div⁻¹ ▸ !rat.one_mul⁻¹ ▸ !ubound_ge)
theorem sep_by_inv {a b : } (H : a > b) : ∃ N : +, a > (b + N⁻¹ + N⁻¹) :=
begin
apply exists.elim (exists_add_lt_and_pos_of_lt H),
intro c Hc,
existsi (pceil ((1 + 1 + 1) / c)),
apply rat.lt.trans,
rotate 1,
apply and.left Hc,
rewrite rat.add.assoc,
apply rat.add_lt_add_left,
rewrite -(@rat.add_halves c) at {3},
apply rat.add_lt_add,
repeat (apply rat.lt_of_le_of_lt;
apply inv_pceil_div;
apply dec_trivial;
apply and.right Hc;
apply div_lt_div_of_pos_of_lt_of_pos;
repeat (apply two_pos);
apply and.right Hc)
end
theorem nonneg_of_ge_neg_invs (a : ) (H : ∀ n : +, -n⁻¹ ≤ a) : 0 ≤ a :=
rat.le_of_not_gt (suppose a < 0,
have H2 : 0 < -a, from neg_pos_of_neg this,
(rat.not_lt_of_ge !H) (iff.mp !lt_neg_iff_lt_neg (calc
(pceil (of_num 2 / -a))⁻¹ ≤ -a / of_num 2
: !inv_pceil_div dec_trivial H2
... < -a / 1
: div_lt_div_of_pos_of_lt_of_pos dec_trivial dec_trivial H2
... = -a : !div_one)))
theorem pnat_bound {ε : } (Hε : ε > 0) : ∃ p : +, p⁻¹ ≤ ε :=
begin
existsi (pceil (1 / ε)),
rewrite -(rat.one_div_one_div ε) at {2},
apply pceil_helper,
apply le.refl,
apply one_div_pos_of_pos Hε
end
theorem p_add_fractions (n : +) : (2 * n)⁻¹ + (2 * 3 * n)⁻¹ + (3 * n)⁻¹ = n⁻¹ :=
assert T : 2⁻¹ + 2⁻¹ * 3⁻¹ + 3⁻¹ = 1, from dec_trivial,
by rewrite[*inv_mul_eq_mul_inv,-*rat.right_distrib,T,rat.one_mul]
end pnat