lean2/library/logic/quantifiers.lean
2015-11-08 14:05:03 -08:00

139 lines
4.9 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad
Universal and existential quantifiers. See also init.logic.
-/
import .connectives
open inhabited nonempty
theorem exists_imp_distrib {A : Type} {B : Prop} {P : A → Prop} : ((∃ a : A, P a) → B) ↔ (∀ a : A, P a → B) :=
iff.intro (λ e x H, e (exists.intro x H)) Exists.rec
theorem forall_iff_not_exists {A : Type} {P : A → Prop} : (¬ ∃ a : A, P a) ↔ ∀ a : A, ¬ P a :=
exists_imp_distrib
theorem not_forall_not_of_exists {A : Type} {p : A → Prop} (H : ∃ x, p x) : ¬ ∀ x, ¬ p x :=
assume H1 : ∀ x, ¬ p x,
obtain (w : A) (Hw : p w), from H,
absurd Hw (H1 w)
theorem not_exists_not_of_forall {A : Type} {p : A → Prop} (H2 : ∀ x, p x) : ¬ ∃ x, ¬p x :=
assume H1 : ∃ x, ¬ p x,
obtain (w : A) (Hw : ¬ p w), from H1,
absurd (H2 w) Hw
theorem not_forall_of_exists_not {A : Type} {P : A → Prop} (H : ∃ a : A, ¬ P a) : ¬ ∀ a : A, P a :=
assume H', not_exists_not_of_forall H' H
theorem forall_congr {A : Type} {φ ψ : A → Prop} : (∀ x, φ x ↔ ψ x) → ((∀ x, φ x) ↔ (∀ x, ψ x)) :=
forall_iff_forall
theorem exists_congr {A : Type} {φ ψ : A → Prop} : (∀ x, φ x ↔ ψ x) → ((∃ x, φ x) ↔ (∃ x, ψ x)) :=
exists_iff_exists
theorem forall_true_iff_true (A : Type) : (∀ x : A, true) ↔ true :=
iff_true_intro (λH, trivial)
theorem forall_p_iff_p (A : Type) [H : inhabited A] (p : Prop) : (∀ x : A, p) ↔ p :=
iff.intro (inhabited.destruct H) (λ Hr x, Hr)
theorem exists_p_iff_p (A : Type) [H : inhabited A] (p : Prop) : (∃ x : A, p) ↔ p :=
iff.intro (Exists.rec (λ x Hp, Hp)) (inhabited.destruct H exists.intro)
theorem forall_and_distribute {A : Type} (φ ψ : A → Prop) :
(∀ x, φ x ∧ ψ x) ↔ (∀ x, φ x) ∧ (∀ x, ψ x) :=
iff.intro
(assume H, and.intro (take x, and.left (H x)) (take x, and.right (H x)))
(assume H x, and.intro (and.left H x) (and.right H x))
theorem exists_or_distribute {A : Type} (φ ψ : A → Prop) :
(∃ x, φ x ψ x) ↔ (∃ x, φ x) (∃ x, ψ x) :=
iff.intro
(Exists.rec (λ x, or.imp !exists.intro !exists.intro))
(or.rec (exists_imp_exists (λ x, or.inl))
(exists_imp_exists (λ x, or.inr)))
section
open decidable eq.ops
variables {A : Type} (P : A → Prop) (a : A) [H : decidable (P a)]
include H
definition decidable_forall_eq [instance] : decidable (∀ x, x = a → P x) :=
if pa : P a then inl (λ x heq, eq.substr heq pa)
else inr (not.mto (λH, H a rfl) pa)
definition decidable_exists_eq [instance] : decidable (∃ x, x = a ∧ P x) :=
if pa : P a then inl (exists.intro a (and.intro rfl pa))
else inr (Exists.rec (λh, and.rec (λheq, eq.substr heq pa)))
end
/- exists_unique -/
definition exists_unique {A : Type} (p : A → Prop) :=
∃x, p x ∧ ∀y, p y → y = x
notation `∃!` binders `, ` r:(scoped P, exists_unique P) := r
theorem exists_unique.intro {A : Type} {p : A → Prop} (w : A) (H1 : p w) (H2 : ∀y, p y → y = w) :
∃!x, p x :=
exists.intro w (and.intro H1 H2)
theorem exists_unique.elim {A : Type} {p : A → Prop} {b : Prop}
(H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, p y → y = x) → b) : b :=
obtain w Hw, from H2,
H1 w (and.left Hw) (and.right Hw)
theorem exists_unique_of_exists_of_unique {A : Type} {p : A → Prop}
(Hex : ∃ x, p x) (Hunique : ∀ y₁ y₂, p y₁ → p y₂ → y₁ = y₂) :
∃! x, p x :=
obtain x px, from Hex,
exists_unique.intro x px (take y, suppose p y, show y = x, from !Hunique this px)
theorem exists_of_exists_unique {A : Type} {p : A → Prop} (H : ∃! x, p x) :
∃ x, p x :=
obtain x Hx, from H,
exists.intro x (and.left Hx)
theorem unique_of_exists_unique {A : Type} {p : A → Prop}
(H : ∃! x, p x) {y₁ y₂ : A} (py₁ : p y₁) (py₂ : p y₂) :
y₁ = y₂ :=
exists_unique.elim H
(take x, suppose p x,
assume unique : ∀ y, p y → y = x,
show y₁ = y₂, from eq.trans (unique _ py₁) (eq.symm (unique _ py₂)))
/- definite description -/
section
open classical
noncomputable definition the {A : Type} {p : A → Prop} (H : ∃! x, p x) : A :=
some (exists_of_exists_unique H)
theorem the_spec {A : Type} {p : A → Prop} (H : ∃! x, p x) : p (the H) :=
some_spec (exists_of_exists_unique H)
theorem eq_the {A : Type} {p : A → Prop} (H : ∃! x, p x) {y : A} (Hy : p y) :
y = the H :=
unique_of_exists_unique H Hy (the_spec H)
end
/- congruences -/
section
variables {A : Type} {p₁ p₂ : A → Prop} (H : ∀ x, p₁ x ↔ p₂ x)
theorem congr_forall : (∀ x, p₁ x) ↔ (∀ x, p₂ x) :=
forall_congr H
theorem congr_exists : (∃ x, p₁ x) ↔ (∃ x, p₂ x) :=
exists_congr H
include H
theorem congr_exists_unique : (∃! x, p₁ x) ↔ (∃! x, p₂ x) :=
congr_exists (λx, congr_and (H x) (congr_forall
(λy, congr_imp (H y) iff.rfl)))
end