86b10ab184
This commit also proves the basic permutation lemmas in the nominal isabelle library.
384 lines
16 KiB
Text
384 lines
16 KiB
Text
/-
|
||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Leonardo de Moura
|
||
|
||
In the standard library we cannot assume the univalence axiom.
|
||
We say two types are equivalent if they are isomorphic.
|
||
|
||
Two equivalent types have the same cardinality.
|
||
-/
|
||
import data.sum data.nat
|
||
open function
|
||
|
||
structure equiv [class] (A B : Type) :=
|
||
(to_fun : A → B)
|
||
(inv_fun : B → A)
|
||
(left_inv : left_inverse inv_fun to_fun)
|
||
(right_inv : right_inverse inv_fun to_fun)
|
||
|
||
namespace equiv
|
||
definition perm [reducible] (A : Type) := equiv A A
|
||
|
||
infix `≃`:50 := equiv
|
||
|
||
definition fn {A B : Type} (e : equiv A B) : A → B :=
|
||
@equiv.to_fun A B e
|
||
|
||
infixr `∙`:100 := fn
|
||
|
||
definition inv {A B : Type} [e : equiv A B] : B → A :=
|
||
@equiv.inv_fun A B e
|
||
|
||
lemma eq_of_to_fun_eq {A B : Type} : ∀ {e₁ e₂ : equiv A B}, fn e₁ = fn e₂ → e₁ = e₂
|
||
| (mk f₁ g₁ l₁ r₁) (mk f₂ g₂ l₂ r₂) h :=
|
||
assert f₁ = f₂, from h,
|
||
assert g₁ = g₂, from funext (λ x,
|
||
assert f₁ (g₁ x) = f₂ (g₂ x), from eq.trans (r₁ x) (eq.symm (r₂ x)),
|
||
have f₁ (g₁ x) = f₁ (g₂ x), by rewrite [-h at this]; exact this,
|
||
show g₁ x = g₂ x, from injective_of_left_inverse l₁ this),
|
||
by congruence; repeat assumption
|
||
|
||
protected definition refl [refl] (A : Type) : A ≃ A :=
|
||
mk (@id A) (@id A) (λ x, rfl) (λ x, rfl)
|
||
|
||
protected definition symm [symm] {A B : Type} : A ≃ B → B ≃ A
|
||
| (mk f g h₁ h₂) := mk g f h₂ h₁
|
||
|
||
protected definition trans [trans] {A B C : Type} : A ≃ B → B ≃ C → A ≃ C
|
||
| (mk f₁ g₁ l₁ r₁) (mk f₂ g₂ l₂ r₂) :=
|
||
mk (f₂ ∘ f₁) (g₁ ∘ g₂)
|
||
(show ∀ x, g₁ (g₂ (f₂ (f₁ x))) = x, by intros; rewrite [l₂, l₁]; reflexivity)
|
||
(show ∀ x, f₂ (f₁ (g₁ (g₂ x))) = x, by intros; rewrite [r₁, r₂]; reflexivity)
|
||
|
||
abbreviation id {A : Type} := equiv.refl A
|
||
|
||
namespace ops
|
||
postfix `⁻¹` := equiv.symm
|
||
postfix `⁻¹` := equiv.inv
|
||
notation e₁ `∘` e₂ := equiv.trans e₂ e₁
|
||
end ops
|
||
open equiv.ops
|
||
|
||
lemma id_apply {A : Type} (x : A) : id ∙ x = x :=
|
||
rfl
|
||
|
||
lemma compose_apply {A B C : Type} (g : B ≃ C) (f : A ≃ B) (x : A) : (g ∘ f) ∙ x = g ∙ f ∙ x :=
|
||
begin cases g, cases f, esimp end
|
||
|
||
lemma inverse_apply_apply {A B : Type} : ∀ (e : A ≃ B) (x : A), e⁻¹ ∙ e ∙ x = x
|
||
| (mk f₁ g₁ l₁ r₁) x := begin unfold [equiv.symm, fn], rewrite l₁ end
|
||
|
||
lemma eq_iff_eq_of_injective {A B : Type} {f : A → B} (inj : injective f) (a b : A) : f a = f b ↔ a = b :=
|
||
iff.intro
|
||
(suppose f a = f b, inj this)
|
||
(suppose a = b, by rewrite this)
|
||
|
||
lemma apply_eq_iff_eq {A B : Type} : ∀ (f : A ≃ B) (x y : A), f ∙ x = f ∙ y ↔ x = y
|
||
| (mk f₁ g₁ l₁ r₁) x y := eq_iff_eq_of_injective (injective_of_left_inverse l₁) x y
|
||
|
||
lemma apply_eq_iff_eq_inverse_apply {A B : Type} : ∀ (f : A ≃ B) (x : A) (y : B), f ∙ x = y ↔ x = f⁻¹ ∙ y
|
||
| (mk f₁ g₁ l₁ r₁) x y :=
|
||
begin
|
||
esimp, unfold [equiv.symm, fn], apply iff.intro,
|
||
suppose f₁ x = y, by subst y; rewrite l₁,
|
||
suppose x = g₁ y, by subst x; rewrite r₁
|
||
end
|
||
|
||
definition false_equiv_empty : empty ≃ false :=
|
||
mk (λ e, empty.rec _ e) (λ h, false.rec _ h) (λ e, empty.rec _ e) (λ h, false.rec _ h)
|
||
|
||
definition arrow_congr [congr] {A₁ B₁ A₂ B₂ : Type} : A₁ ≃ A₂ → B₁ ≃ B₂ → (A₁ → B₁) ≃ (A₂ → B₂)
|
||
| (mk f₁ g₁ l₁ r₁) (mk f₂ g₂ l₂ r₂) :=
|
||
mk
|
||
(λ (h : A₁ → B₁) (a : A₂), f₂ (h (g₁ a)))
|
||
(λ (h : A₂ → B₂) (a : A₁), g₂ (h (f₁ a)))
|
||
(λ h, funext (λ a, by rewrite [l₁, l₂]; reflexivity))
|
||
(λ h, funext (λ a, by rewrite [r₁, r₂]; reflexivity))
|
||
|
||
section
|
||
open unit
|
||
definition arrow_unit_equiv_unit [simp] (A : Type) : (A → unit) ≃ unit :=
|
||
mk (λ f, star) (λ u, (λ f, star))
|
||
(λ f, funext (λ x, by cases (f x); reflexivity))
|
||
(λ u, by cases u; reflexivity)
|
||
|
||
definition unit_arrow_equiv [simp] (A : Type) : (unit → A) ≃ A :=
|
||
mk (λ f, f star) (λ a, (λ u, a))
|
||
(λ f, funext (λ x, by cases x; reflexivity))
|
||
(λ u, rfl)
|
||
|
||
definition empty_arrow_equiv_unit [simp] (A : Type) : (empty → A) ≃ unit :=
|
||
mk (λ f, star) (λ u, λ e, empty.rec _ e)
|
||
(λ f, funext (λ x, empty.rec _ x))
|
||
(λ u, by cases u; reflexivity)
|
||
|
||
definition false_arrow_equiv_unit [simp] (A : Type) : (false → A) ≃ unit :=
|
||
calc (false → A) ≃ (empty → A) : arrow_congr false_equiv_empty !equiv.refl
|
||
... ≃ unit : empty_arrow_equiv_unit
|
||
end
|
||
|
||
definition prod_congr [congr] {A₁ B₁ A₂ B₂ : Type} : A₁ ≃ A₂ → B₁ ≃ B₂ → (A₁ × B₁) ≃ (A₂ × B₂)
|
||
| (mk f₁ g₁ l₁ r₁) (mk f₂ g₂ l₂ r₂) :=
|
||
mk
|
||
(λ p, match p with (a₁, b₁) := (f₁ a₁, f₂ b₁) end)
|
||
(λ p, match p with (a₂, b₂) := (g₁ a₂, g₂ b₂) end)
|
||
(λ p, begin cases p, esimp, rewrite [l₁, l₂], reflexivity end)
|
||
(λ p, begin cases p, esimp, rewrite [r₁, r₂], reflexivity end)
|
||
|
||
definition prod_comm [simp] (A B : Type) : (A × B) ≃ (B × A) :=
|
||
mk (λ p, match p with (a, b) := (b, a) end)
|
||
(λ p, match p with (b, a) := (a, b) end)
|
||
(λ p, begin cases p, esimp end)
|
||
(λ p, begin cases p, esimp end)
|
||
|
||
definition prod_assoc [simp] (A B C : Type) : ((A × B) × C) ≃ (A × (B × C)) :=
|
||
mk (λ t, match t with ((a, b), c) := (a, (b, c)) end)
|
||
(λ t, match t with (a, (b, c)) := ((a, b), c) end)
|
||
(λ t, begin cases t with ab c, cases ab, esimp end)
|
||
(λ t, begin cases t with a bc, cases bc, esimp end)
|
||
|
||
section
|
||
open unit prod.ops
|
||
definition prod_unit_right [simp] (A : Type) : (A × unit) ≃ A :=
|
||
mk (λ p, p.1)
|
||
(λ a, (a, star))
|
||
(λ p, begin cases p with a u, cases u, esimp end)
|
||
(λ a, rfl)
|
||
|
||
definition prod_unit_left [simp] (A : Type) : (unit × A) ≃ A :=
|
||
calc (unit × A) ≃ (A × unit) : prod_comm
|
||
... ≃ A : prod_unit_right
|
||
|
||
definition prod_empty_right [simp] (A : Type) : (A × empty) ≃ empty :=
|
||
mk (λ p, empty.rec _ p.2) (λ e, empty.rec _ e) (λ p, empty.rec _ p.2) (λ e, empty.rec _ e)
|
||
|
||
definition prod_empty_left [simp] (A : Type) : (empty × A) ≃ empty :=
|
||
calc (empty × A) ≃ (A × empty) : prod_comm
|
||
... ≃ empty : prod_empty_right
|
||
end
|
||
|
||
section
|
||
open sum
|
||
definition sum_congr [congr] {A₁ B₁ A₂ B₂ : Type} : A₁ ≃ A₂ → B₁ ≃ B₂ → (A₁ + B₁) ≃ (A₂ + B₂)
|
||
| (mk f₁ g₁ l₁ r₁) (mk f₂ g₂ l₂ r₂) :=
|
||
mk
|
||
(λ s, match s with inl a₁ := inl (f₁ a₁) | inr b₁ := inr (f₂ b₁) end)
|
||
(λ s, match s with inl a₂ := inl (g₁ a₂) | inr b₂ := inr (g₂ b₂) end)
|
||
(λ s, begin cases s, {esimp, rewrite l₁, reflexivity}, {esimp, rewrite l₂, reflexivity} end)
|
||
(λ s, begin cases s, {esimp, rewrite r₁, reflexivity}, {esimp, rewrite r₂, reflexivity} end)
|
||
|
||
open bool unit
|
||
definition bool_equiv_unit_sum_unit : bool ≃ (unit + unit) :=
|
||
mk (λ b, match b with tt := inl star | ff := inr star end)
|
||
(λ s, match s with inl star := tt | inr star := ff end)
|
||
(λ b, begin cases b, esimp, esimp end)
|
||
(λ s, begin cases s with u u, {cases u, esimp}, {cases u, esimp} end)
|
||
|
||
definition sum_comm [simp] (A B : Type) : (A + B) ≃ (B + A) :=
|
||
mk (λ s, match s with inl a := inr a | inr b := inl b end)
|
||
(λ s, match s with inl b := inr b | inr a := inl a end)
|
||
(λ s, begin cases s, esimp, esimp end)
|
||
(λ s, begin cases s, esimp, esimp end)
|
||
|
||
definition sum_assoc [simp] (A B C : Type) : ((A + B) + C) ≃ (A + (B + C)) :=
|
||
mk (λ s, match s with inl (inl a) := inl a | inl (inr b) := inr (inl b) | inr c := inr (inr c) end)
|
||
(λ s, match s with inl a := inl (inl a) | inr (inl b) := inl (inr b) | inr (inr c) := inr c end)
|
||
(λ s, begin cases s with ab c, cases ab, repeat esimp end)
|
||
(λ s, begin cases s with a bc, esimp, cases bc, repeat esimp end)
|
||
|
||
definition sum_empty_right [simp] (A : Type) : (A + empty) ≃ A :=
|
||
mk (λ s, match s with inl a := a | inr e := empty.rec _ e end)
|
||
(λ a, inl a)
|
||
(λ s, begin cases s with a e, esimp, exact empty.rec _ e end)
|
||
(λ a, rfl)
|
||
|
||
definition sum_empty_left [simp] (A : Type) : (empty + A) ≃ A :=
|
||
calc (empty + A) ≃ (A + empty) : sum_comm
|
||
... ≃ A : sum_empty_right
|
||
end
|
||
|
||
section
|
||
open prod.ops
|
||
definition arrow_prod_equiv_prod_arrow (A B C : Type) : (C → A × B) ≃ ((C → A) × (C → B)) :=
|
||
mk (λ f, (λ c, (f c).1, λ c, (f c).2))
|
||
(λ p, λ c, (p.1 c, p.2 c))
|
||
(λ f, funext (λ c, begin esimp, cases f c, esimp end))
|
||
(λ p, begin cases p, esimp end)
|
||
|
||
definition arrow_arrow_equiv_prod_arrow (A B C : Type) : (A → B → C) ≃ (A × B → C) :=
|
||
mk (λ f, λ p, f p.1 p.2)
|
||
(λ f, λ a b, f (a, b))
|
||
(λ f, rfl)
|
||
(λ f, funext (λ p, begin cases p, esimp end))
|
||
|
||
open sum
|
||
definition sum_arrow_equiv_prod_arrow (A B C : Type) : ((A + B) → C) ≃ ((A → C) × (B → C)) :=
|
||
mk (λ f, (λ a, f (inl a), λ b, f (inr b)))
|
||
(λ p, (λ s, match s with inl a := p.1 a | inr b := p.2 b end))
|
||
(λ f, funext (λ s, begin cases s, esimp, esimp end))
|
||
(λ p, begin cases p, esimp end)
|
||
|
||
definition sum_prod_distrib (A B C : Type) : ((A + B) × C) ≃ ((A × C) + (B × C)) :=
|
||
mk (λ p, match p with (inl a, c) := inl (a, c) | (inr b, c) := inr (b, c) end)
|
||
(λ s, match s with inl (a, c) := (inl a, c) | inr (b, c) := (inr b, c) end)
|
||
(λ p, begin cases p with ab c, cases ab, repeat esimp end)
|
||
(λ s, begin cases s with ac bc, cases ac, esimp, cases bc, esimp end)
|
||
|
||
definition prod_sum_distrib (A B C : Type) : (A × (B + C)) ≃ ((A × B) + (A × C)) :=
|
||
calc (A × (B + C)) ≃ ((B + C) × A) : prod_comm
|
||
... ≃ ((B × A) + (C × A)) : sum_prod_distrib
|
||
... ≃ ((A × B) + (A × C)) : sum_congr !prod_comm !prod_comm
|
||
|
||
definition bool_prod_equiv_sum (A : Type) : (bool × A) ≃ (A + A) :=
|
||
calc (bool × A) ≃ ((unit + unit) × A) : prod_congr bool_equiv_unit_sum_unit !equiv.refl
|
||
... ≃ (A × (unit + unit)) : prod_comm
|
||
... ≃ ((A × unit) + (A × unit)) : prod_sum_distrib
|
||
... ≃ (A + A) : sum_congr !prod_unit_right !prod_unit_right
|
||
end
|
||
|
||
section
|
||
open sum nat unit prod.ops
|
||
definition nat_equiv_nat_sum_unit : nat ≃ (nat + unit) :=
|
||
mk (λ n, match n with zero := inr star | succ a := inl a end)
|
||
(λ s, match s with inl n := succ n | inr star := zero end)
|
||
(λ n, begin cases n, repeat esimp end)
|
||
(λ s, begin cases s with a u, esimp, {cases u, esimp} end)
|
||
|
||
definition nat_sum_unit_equiv_nat [simp] : (nat + unit) ≃ nat :=
|
||
equiv.symm nat_equiv_nat_sum_unit
|
||
|
||
definition nat_prod_nat_equiv_nat [simp] : (nat × nat) ≃ nat :=
|
||
mk (λ p, mkpair p.1 p.2)
|
||
(λ n, unpair n)
|
||
(λ p, begin cases p, apply unpair_mkpair end)
|
||
(λ n, mkpair_unpair n)
|
||
|
||
definition nat_sum_bool_equiv_nat [simp] : (nat + bool) ≃ nat :=
|
||
calc (nat + bool) ≃ (nat + (unit + unit)) : sum_congr !equiv.refl bool_equiv_unit_sum_unit
|
||
... ≃ ((nat + unit) + unit) : sum_assoc
|
||
... ≃ (nat + unit) : sum_congr nat_sum_unit_equiv_nat !equiv.refl
|
||
... ≃ nat : nat_sum_unit_equiv_nat
|
||
|
||
open decidable
|
||
definition nat_sum_nat_equiv_nat [simp] : (nat + nat) ≃ nat :=
|
||
mk (λ s, match s with inl n := 2*n | inr n := 2*n+1 end)
|
||
(λ n, if even n then inl (n div 2) else inr ((n - 1) div 2))
|
||
(λ s, begin
|
||
have two_gt_0 : 2 > zero, from dec_trivial,
|
||
cases s,
|
||
{esimp, rewrite [if_pos (even_two_mul _), mul_div_cancel_left _ two_gt_0]},
|
||
{esimp, rewrite [if_neg (not_even_two_mul_plus_one _), add_sub_cancel, mul_div_cancel_left _ two_gt_0]}
|
||
end)
|
||
(λ n, by_cases
|
||
(λ h : even n, begin rewrite [if_pos h], esimp, rewrite [mul_div_cancel' (dvd_of_even h)] end)
|
||
(λ h : ¬ even n,
|
||
begin
|
||
rewrite [if_neg h], esimp,
|
||
cases n,
|
||
{exact absurd even_zero h},
|
||
{rewrite [-add_one, add_sub_cancel,
|
||
mul_div_cancel' (dvd_of_even (even_of_odd_succ (odd_of_not_even h)))]}
|
||
end))
|
||
|
||
definition prod_equiv_of_equiv_nat {A : Type} : A ≃ nat → (A × A) ≃ A :=
|
||
take e, calc
|
||
(A × A) ≃ (nat × nat) : prod_congr e e
|
||
... ≃ nat : nat_prod_nat_equiv_nat
|
||
... ≃ A : equiv.symm e
|
||
end
|
||
|
||
section
|
||
open decidable
|
||
definition decidable_eq_of_equiv {A B : Type} [h : decidable_eq A] : A ≃ B → decidable_eq B
|
||
| (mk f g l r) :=
|
||
take b₁ b₂, match h (g b₁) (g b₂) with
|
||
| inl he := inl (assert aux : f (g b₁) = f (g b₂), from congr_arg f he,
|
||
begin rewrite *r at aux, exact aux end)
|
||
| inr hn := inr (λ b₁eqb₂, by subst b₁eqb₂; exact absurd rfl hn)
|
||
end
|
||
end
|
||
|
||
definition inhabited_of_equiv {A B : Type} [h : inhabited A] : A ≃ B → inhabited B
|
||
| (mk f g l r) := inhabited.mk (f (inhabited.value h))
|
||
|
||
section
|
||
open subtype
|
||
definition subtype_equiv_of_subtype {A B : Type} {p : A → Prop} : A ≃ B → {a : A | p a} ≃ {b : B | p b⁻¹}
|
||
| (mk f g l r) :=
|
||
mk (λ s, match s with tag v h := tag (f v) (eq.rec_on (eq.symm (l v)) h) end)
|
||
(λ s, match s with tag v h := tag (g v) (eq.rec_on (eq.symm (r v)) h) end)
|
||
(λ s, begin cases s, esimp, congruence, rewrite l, reflexivity end)
|
||
(λ s, begin cases s, esimp, congruence, rewrite r, reflexivity end)
|
||
end
|
||
|
||
section swap
|
||
variable {A : Type}
|
||
variable [h : decidable_eq A]
|
||
include h
|
||
open decidable
|
||
|
||
definition swap_core (a b r : A) : A :=
|
||
if r = a then b
|
||
else if r = b then a
|
||
else r
|
||
|
||
lemma swap_core_swap_core (r a b : A) : swap_core a b (swap_core a b r) = r :=
|
||
by_cases
|
||
(suppose r = a, by_cases
|
||
(suppose r = b, begin unfold swap_core, rewrite [if_pos `r = a`, if_pos (eq.refl b), -`r = a`, -`r = b`, if_pos (eq.refl r)] end)
|
||
(suppose ¬ r = b,
|
||
assert b ≠ a, from assume h, begin rewrite h at this, contradiction end,
|
||
begin unfold swap_core, rewrite [*if_pos `r = a`, if_pos (eq.refl b), if_neg `b ≠ a`, `r = a`] end))
|
||
(suppose ¬ r = a, by_cases
|
||
(suppose r = b, begin unfold swap_core, rewrite [if_neg `¬ r = a`, *if_pos `r = b`, if_pos (eq.refl a), this] end)
|
||
(suppose ¬ r = b, begin unfold swap_core, rewrite [*if_neg `¬ r = a`, *if_neg `¬ r = b`, if_neg `¬ r = a`] end))
|
||
|
||
lemma swap_core_self (r a : A) : swap_core a a r = r :=
|
||
by_cases
|
||
(suppose r = a, begin unfold swap_core, rewrite [*if_pos this, this] end)
|
||
(suppose r ≠ a, begin unfold swap_core, rewrite [*if_neg this] end)
|
||
|
||
lemma swap_core_comm (r a b : A) : swap_core a b r = swap_core b a r :=
|
||
by_cases
|
||
(suppose r = a, by_cases
|
||
(suppose r = b, begin unfold swap_core, rewrite [if_pos `r = a`, if_pos `r = b`, -`r = a`, -`r = b`] end)
|
||
(suppose ¬ r = b, begin unfold swap_core, rewrite [*if_pos `r = a`, if_neg `¬ r = b`] end))
|
||
(suppose ¬ r = a, by_cases
|
||
(suppose r = b, begin unfold swap_core, rewrite [if_neg `¬ r = a`, *if_pos `r = b`] end)
|
||
(suppose ¬ r = b, begin unfold swap_core, rewrite [*if_neg `¬ r = a`, *if_neg `¬ r = b`] end))
|
||
|
||
definition swap (a b : A) : perm A :=
|
||
mk (swap_core a b)
|
||
(swap_core a b)
|
||
(λ x, abstract by rewrite swap_core_swap_core end)
|
||
(λ x, abstract by rewrite swap_core_swap_core end)
|
||
|
||
lemma swap_self (a : A) : swap a a = id :=
|
||
eq_of_to_fun_eq (funext (λ x, begin unfold [swap, fn], rewrite swap_core_self end))
|
||
|
||
lemma swap_comm (a b : A) : swap a b = swap b a :=
|
||
eq_of_to_fun_eq (funext (λ x, begin unfold [swap, fn], rewrite swap_core_comm end))
|
||
|
||
lemma swap_apply_def (a b : A) (x : A) : swap a b ∙ x = if x = a then b else if x = b then a else x :=
|
||
rfl
|
||
|
||
lemma swap_apply_left (a b : A) : swap a b ∙ a = b :=
|
||
if_pos rfl
|
||
|
||
lemma swap_apply_right (a b : A) : swap a b ∙ b = a :=
|
||
by_cases
|
||
(suppose b = a, by rewrite [swap_apply_def, this, *if_pos rfl])
|
||
(suppose b ≠ a, by rewrite [swap_apply_def, if_pos rfl, if_neg this])
|
||
|
||
lemma swap_apply_of_ne_of_ne {a b : A} {x : A} : x ≠ a → x ≠ b → swap a b ∙ x = x :=
|
||
assume h₁ h₂, by rewrite [swap_apply_def, if_neg h₁, if_neg h₂]
|
||
|
||
lemma swap_swap (a b : A) : swap a b ∘ swap a b = id :=
|
||
eq_of_to_fun_eq (funext (λ x, begin unfold [swap, fn, equiv.trans, equiv.refl], rewrite swap_core_swap_core end))
|
||
|
||
lemma swap_compose_apply (a b : A) (π : perm A) (x : A) : (swap a b ∘ π) ∙ x = if π ∙ x = a then b else if π ∙ x = b then a else π ∙ x :=
|
||
begin cases π, reflexivity end
|
||
|
||
end swap
|
||
end equiv
|