lean2/library/theories/analysis/bounded_linear_operator.lean

411 lines
15 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Robert Y. Lewis
Bounded linear operators
-/
import .normed_space .real_limit algebra.module algebra.homomorphism
open real nat classical
noncomputable theory
namespace analysis
-- define bounded linear operators and basic instances
section bdd_lin_op
set_option pp.universes true
structure is_bdd_linear_map [class] {V W : Type} [normed_vector_space V] [normed_vector_space W] (f : V → W)
extends is_module_hom f :=
(op_norm : ) (op_norm_pos : op_norm > 0) (op_norm_bound : ∀ v : V, ∥f v∥ ≤ op_norm * ∥v∥)
theorem is_bdd_linear_map_id (V : Type) [normed_vector_space V] : is_bdd_linear_map (λ x : V, x) :=
begin
fapply is_bdd_linear_map.mk,
repeat (intros; reflexivity),
exact 1,
exact zero_lt_one,
intro, rewrite one_mul, apply le.refl
end
theorem is_bdd_linear_map_zero [instance] (V W : Type) [normed_vector_space V] [normed_vector_space W] :
is_bdd_linear_map (λ x : V, (0 : W)) :=
begin
fapply is_bdd_linear_map.mk,
intros,
rewrite zero_add,
intros,
rewrite smul_zero,
exact 1,
exact zero_lt_one,
intros,
rewrite [norm_zero, one_mul],
apply norm_nonneg
end
theorem is_bdd_linear_map_add [instance] {V W : Type} [normed_vector_space V] [normed_vector_space W]
(f g : V → W) [Hbf : is_bdd_linear_map f] [Hbg : is_bdd_linear_map g] :
is_bdd_linear_map (λ x, f x + g x) :=
begin
fapply is_bdd_linear_map.mk,
{intros,
rewrite [hom_add f, hom_add g],-- (this takes 4 seconds!!)rewrite [2 hom_add],
simp},
{intros,
rewrite [hom_smul f, hom_smul g, smul_left_distrib]},
{exact is_bdd_linear_map.op_norm _ _ f + is_bdd_linear_map.op_norm _ _ g},
{apply add_pos,
repeat apply is_bdd_linear_map.op_norm_pos},
{intro,
apply le.trans,
apply norm_triangle,
rewrite right_distrib,
apply add_le_add,
repeat apply is_bdd_linear_map.op_norm_bound}
end
theorem is_bdd_linear_map_smul [instance] {V W : Type} [normed_vector_space V] [normed_vector_space W]
(f : V → W) (c : ) [Hbf : is_bdd_linear_map f] : is_bdd_linear_map (λ x, c • f x) :=
begin
apply @decidable.cases_on (c = 0),
exact _,
{intro Hcz,
rewrite Hcz,
have Hfe : (λ x : V, (0 : ) • f x) = (λ x : V, 0), from funext (λ x, !zero_smul),
rewrite Hfe,
apply is_bdd_linear_map_zero},
intro Hcnz,
fapply is_bdd_linear_map.mk,
{intros,
rewrite [hom_add f, smul_left_distrib]},--rewrite [linear_map_additive f, smul_left_distrib]},
{intros,
rewrite [hom_smul f, -*mul_smul, {c*r}mul.comm]},
--rewrite [linear_map_homogeneous f, -*mul_smul, {c * a}mul.comm]},
{exact (abs c) * is_bdd_linear_map.op_norm _ _ f},
{have Hpos : abs c > 0, from abs_pos_of_ne_zero Hcnz,
apply mul_pos,
assumption,
apply is_bdd_linear_map.op_norm_pos},
{intro,
rewrite [norm_smul, mul.assoc],
apply mul_le_mul_of_nonneg_left,
apply is_bdd_linear_map.op_norm_bound,
apply abs_nonneg}
end
theorem is_bdd_linear_map_neg [instance] {V W : Type} [normed_vector_space V] [normed_vector_space W]
(f : V → W) [Hbf : is_bdd_linear_map f] : is_bdd_linear_map (λ x, -f x) :=
begin
have H : (λ x : V, -f x) = (λ x : V, (-1 : ) • f x), from funext (λ x, eq.symm !neg_one_smul),
rewrite H,
apply is_bdd_linear_map_smul
end
-- this can't be an instance because things loop
theorem is_bdd_linear_map_comp {U V W : Type} [normed_vector_space U] [normed_vector_space V]
[normed_vector_space W] (f : V → W) (g : U → V) [is_bdd_linear_map f] [is_bdd_linear_map g] :
is_bdd_linear_map (λ u, f (g u)) :=
begin
fapply is_bdd_linear_map.mk,
{intros,
rewrite [hom_add g, hom_add f]},--rewrite [linear_map_additive g, linear_map_additive f]},
{intros,
rewrite [hom_smul g, hom_smul f]},--rewrite [linear_map_homogeneous g, linear_map_homogeneous f]},
{exact is_bdd_linear_map.op_norm _ _ f * is_bdd_linear_map.op_norm _ _ g},
{apply mul_pos, repeat apply is_bdd_linear_map.op_norm_pos},
{intros,
apply le.trans,
apply is_bdd_linear_map.op_norm_bound _ _ f,
apply le.trans,
apply mul_le_mul_of_nonneg_left,
apply is_bdd_linear_map.op_norm_bound _ _ g,
apply le_of_lt !is_bdd_linear_map.op_norm_pos,
rewrite *mul.assoc,
apply le.refl}
end
variables {V W : Type}
variables [HV : normed_vector_space V] [HW : normed_vector_space W]
include HV HW
variable f : V → W
variable [Hf : is_bdd_linear_map f]
include Hf
definition op_norm := is_bdd_linear_map.op_norm _ _ f
theorem op_norm_pos : op_norm f > 0 := is_bdd_linear_map.op_norm_pos _ _ f
theorem op_norm_bound (v : V) : ∥f v∥ ≤ (op_norm f) * ∥v∥ := is_bdd_linear_map.op_norm_bound _ _ f v
theorem bounded_linear_operator_continuous : continuous f :=
begin
intro x,
apply normed_vector_space.continuous_at_intro,
intro ε Hε,
existsi ε / (op_norm f),
split,
apply div_pos_of_pos_of_pos Hε !op_norm_pos,
intro x' Hx',
rewrite [-hom_sub f],--[-linear_map_sub f],
apply lt_of_le_of_lt,
apply op_norm_bound f,
rewrite [-@mul_div_cancel' _ _ ε (op_norm f) (ne_of_gt !op_norm_pos)],
apply mul_lt_mul_of_pos_left,
exact Hx',
apply op_norm_pos
end
end bdd_lin_op
-- define Frechet derivative and basic properties
section frechet_deriv
variables {V W : Type}
variables [HV : normed_vector_space V] [HW : normed_vector_space W]
include HV HW
definition is_frechet_deriv_at (f A : V → W) [is_bdd_linear_map A] (x : V) :=
(λ h : V, ∥f (x + h) - f x - A h ∥ / ∥ h ∥) ⟶ 0 at 0
theorem is_frechet_deriv_at_intro {f A : V → W} [is_bdd_linear_map A] {x : V}
(H : ∀ ⦃ε : ℝ⦄, ε > 0 →
(∃ δ : , δ > 0 ∧ ∀ ⦃x' : V⦄, x' ≠ 0 ∧ ∥x'∥ < δ → ∥f (x + x') - f x - A x'∥ / ∥x'∥ < ε)) :
is_frechet_deriv_at f A x :=
begin
intros ε Hε,
cases H Hε with δ Hδ,
cases Hδ with Hδ Hδ',
existsi δ,
split,
assumption,
intros x' Hx',
cases Hx' with Hx'1 Hx'2,
show abs (∥f (x + x') - f x - A x'∥ / ∥x'∥ - 0) < ε, begin
have H : ∥f (x + x') - f x - A x'∥ / ∥x'∥ ≥ 0,
from div_nonneg_of_nonneg_of_nonneg !norm_nonneg !norm_nonneg,
rewrite [sub_zero, abs_of_nonneg H],
apply Hδ',
split,
assumption,
rewrite [-sub_zero x'],
apply Hx'2
end
end
theorem is_frechet_deriv_at_elim {f A : V → W} [is_bdd_linear_map A] {x : V} (H : is_frechet_deriv_at f A x) :
∀ ⦃ε : ℝ⦄, ε > 0 →
(∃ δ : , δ > 0 ∧ ∀ ⦃x' : V⦄, x' ≠ 0 ∧ ∥x'∥ < δ → ∥f (x + x') - f x - A x'∥ / ∥x'∥ < ε) :=
begin
intros ε Hε,
cases H Hε with δ Hδ,
cases Hδ with Hδ Hδ',
existsi δ,
split,
assumption,
intros x' Hx',
rewrite [-sub_zero x' at Hx' {2}],
have Hδ'' : abs (∥f (x + x') - f x - A x'∥ / ∥x'∥ - 0) < ε, from Hδ' Hx',
have Hpos : ∥f (x + x') - f x - A x'∥ / ∥x'∥ ≥ 0, from div_nonneg_of_nonneg_of_nonneg !norm_nonneg !norm_nonneg,
rewrite [sub_zero at Hδ'', abs_of_nonneg Hpos at Hδ''],
assumption
end
structure frechet_diffable_at [class] (f : V → W) (x : V) :=
(A : V → W) [HA : is_bdd_linear_map A] (is_fr_der : is_frechet_deriv_at f A x)
variables f g : V → W
variable x : V
definition frechet_deriv_at [Hf : frechet_diffable_at f x] : V → W :=
frechet_diffable_at.A _ _ f x
definition frechet_deriv_at_is_bdd_linear_map [instance] (f : V → W) (x : V) [Hf : frechet_diffable_at f x] :
is_bdd_linear_map (frechet_deriv_at f x) :=
frechet_diffable_at.HA _ _ f x
theorem frechet_deriv_spec [Hf : frechet_diffable_at f x] :
(λ h : V, ∥f (x + h) - f x - (frechet_deriv_at f x h) ∥ / ∥ h ∥) ⟶ 0 at 0 :=
frechet_diffable_at.is_fr_der _ _ f x
theorem frechet_deriv_at_const {w : W} : is_frechet_deriv_at (λ v : V, w) (λ v : V, 0) x :=
begin
intros ε Hε,
existsi 1,
split,
exact zero_lt_one,
intros x' Hx',
rewrite [sub_self, sub_zero, norm_zero],
krewrite [zero_div, dist_self],
assumption
end
theorem frechet_deriv_at_smul {c : } {A : V → W} [is_bdd_linear_map A]
(Hf : is_frechet_deriv_at f A x) : is_frechet_deriv_at (λ y, c • f y) (λ y, c • A y) x :=
begin
eapply @decidable.cases_on (abs c = 0),
exact _,
{intro Hc,
have Hz : c = 0, from eq_zero_of_abs_eq_zero Hc,
have Hfz : (λ y : V, (0 : ) • f y) = (λ y : V, 0), from funext (λ y, !zero_smul),
--have Hfz' : (λ x : V, (0 : ) • A x) = (λ x : V, 0), from funext (λ y, !zero_smul),
-- rewriting Hfz' produces type-incorrect term
rewrite [Hz, Hfz, ↑is_frechet_deriv_at],
intro ε Hε,
existsi 1,
split,
exact zero_lt_one,
intro x' Hx',
rewrite [zero_smul, *sub_zero, norm_zero],
krewrite [zero_div, dist_self],
exact Hε},
intro Hcnz,
rewrite ↑is_frechet_deriv_at,
intros ε Hε,
have Hεc : ε / abs c > 0, from div_pos_of_pos_of_pos Hε (lt_of_le_of_ne !abs_nonneg (ne.symm Hcnz)),
cases Hf Hεc with δ Hδ,
cases Hδ with Hδp Hδ,
existsi δ,
split,
assumption,
intro x' Hx',
show abs ((∥c • f (x + x') - c • f x - c • A x'∥ / ∥x'∥ - 0)) < ε, begin
rewrite [sub_zero, -2 smul_sub_left_distrib, norm_smul],
krewrite mul_div_assoc,
rewrite [abs_mul, abs_abs, -{ε}mul_div_cancel' Hcnz],
apply mul_lt_mul_of_pos_left,
have Hδ' : abs (∥f (x + x') - f x - A x'∥ / ∥x'∥ - 0) < ε / abs c, from Hδ Hx',
rewrite sub_zero at Hδ',
apply Hδ',
apply lt_of_le_of_ne,
apply abs_nonneg,
apply ne.symm,
apply Hcnz
end
end
theorem is_frechet_deriv_at_neg {A : V → W} [is_bdd_linear_map A]
(Hf : is_frechet_deriv_at f A x) : is_frechet_deriv_at (λ y, - f y) (λ y, - A y) x :=
begin
apply is_frechet_deriv_at_intro,
intros ε Hε,
cases is_frechet_deriv_at_elim Hf Hε with δ Hδ,
existsi δ,
split,
exact and.left Hδ,
intro x' Hx',
rewrite [-norm_neg, neg_sub, sub_neg_eq_add, sub_add_eq_sub_sub, sub_neg_eq_add,
add_sub_assoc, add.comm, -sub_eq_add_neg],
apply and.right Hδ,
assumption
end
theorem is_frechet_deriv_at_add (A B : V → W) [is_bdd_linear_map A] [is_bdd_linear_map B]
(Hf : is_frechet_deriv_at f A x) (Hg : is_frechet_deriv_at g B x) :
is_frechet_deriv_at (λ y, f y + g y) (λ y, A y + B y) x :=
begin
rewrite ↑is_frechet_deriv_at,
have Hle : ∀ h, ∥f (x + h) + g (x + h) - (f x + g x) - (A h + B h)∥ / ∥h∥ ≤
∥f (x + h) - f x - A h∥ / ∥h∥ + ∥g (x + h) - g x - B h∥ / ∥h∥, begin
intro h,
cases em (∥h∥ > 0) with Hh Hh,
krewrite div_add_div_same,
apply div_le_div_of_le_of_pos,
have Hfeq : f (x + h) + g (x + h) - (f x + g x) - (A h + B h) =
(f (x + h) - f x - A h) + (g (x + h) - g x - B h), by simp,
rewrite Hfeq,
apply norm_triangle,
exact Hh,
have Hhe : ∥h∥ = 0, from eq_of_le_of_ge (le_of_not_gt Hh) !norm_nonneg,
krewrite [Hhe, *div_zero, zero_add],
eapply le.refl
end,
have Hlimge : (λ h, ∥f (x + h) - f x - A h∥ / ∥h∥ + ∥g (x + h) - g x - B h∥ / ∥h∥) ⟶ 0 at 0, begin
rewrite [-zero_add 0],
apply add_converges_to_at,
apply Hf,
apply Hg
end,
have Hlimle : (λ (h : V), (0 : )) ⟶ 0 at 0, from converges_to_at_constant 0 0,
apply converges_to_at_squeeze Hlimle Hlimge,
intro y,
apply div_nonneg_of_nonneg_of_nonneg,
repeat apply norm_nonneg,
apply Hle
end
open topology
theorem continuous_at_of_diffable_at [Hf : frechet_diffable_at f x] : continuous_at f x :=
begin
apply normed_vector_space.continuous_at_intro,
intros ε Hε,
note Hfds := frechet_deriv_spec f x Hε,
cases Hfds with δ Hδ,
cases Hδ with Hδ Hδ',
existsi min δ ((ε / 2) / (ε + op_norm (frechet_deriv_at f x))),
split,
apply lt_min,
exact Hδ,
repeat apply div_pos_of_pos_of_pos,
exact Hε,
apply two_pos,
apply add_pos Hε !op_norm_pos,
intro x' Hx',
cases em (x' - x = 0) with Heq Hneq,
rewrite [eq_of_sub_eq_zero Heq, sub_self, norm_zero], assumption,
have Hx'x : x' - x ≠ 0 ∧ dist (x' - x) 0 < δ, from and.intro Hneq begin
change ∥(x' - x) - 0∥ < δ,
rewrite sub_zero,
apply lt_of_lt_of_le,
apply Hx',
apply min_le_left
end,
have Hx'xp : ∥x' - x∥ > 0, from norm_pos_of_ne_zero Hneq,
have Hδ'' : abs (∥f (x + (x' - x)) - f x - frechet_deriv_at f x (x' - x)∥ / ∥x' - x∥ - 0) < ε, from Hδ' Hx'x,
have Hnn : ∥f (x + (x' - x)) - f x - frechet_deriv_at f x (x' - x)∥ / ∥x' - x∥ ≥ 0,
from div_nonneg_of_nonneg_of_nonneg !norm_nonneg !norm_nonneg,
rewrite [sub_zero at Hδ'', abs_of_nonneg Hnn at Hδ'', add.comm at Hδ'', sub_add_cancel at Hδ''],
note H1 := lt_mul_of_div_lt_of_pos Hx'xp Hδ'',
have H2 : f x' - f x = f x' - f x - frechet_deriv_at f x (x' - x) + frechet_deriv_at f x (x' - x), by simp,
rewrite H2,
apply lt_of_le_of_lt,
apply norm_triangle,
apply lt.trans, --lt_of_lt_of_le,
apply add_lt_add_of_lt_of_le,
apply H1,
apply op_norm_bound (!frechet_deriv_at),
rewrite [-add_halves ε at {2}],
apply add_lt_add,
let on := op_norm (frechet_deriv_at f x),
exact calc
ε * ∥x' - x∥ < ε * min δ ((ε / 2) / (ε + on)) : mul_lt_mul_of_pos_left Hx' Hε
... ≤ ε * ((ε / 2) / (ε + on)) : mul_le_mul_of_nonneg_left !min_le_right (le_of_lt Hε)
... < ε / 2 : mul_div_self_add_lt (div_pos_of_pos_of_pos Hε two_pos) Hε !op_norm_pos,
exact calc
on * ∥x' - x∥ < on * min δ ((ε / 2) / (ε + on)) : mul_lt_mul_of_pos_left Hx' !op_norm_pos
... ≤ on * ((ε / 2) / (ε + on)) : mul_le_mul_of_nonneg_left !min_le_right (le_of_lt !op_norm_pos)
... < ε / 2 : mul_div_add_self_lt (div_pos_of_pos_of_pos Hε two_pos) Hε !op_norm_pos,
end
end frechet_deriv
/-section comp
variables {U V W : Type}
variables [HU : normed_vector_space U] [HV : normed_vector_space V] [HW : normed_vector_space W]
variables {f : V → W} {g : U → V}
variables {A : V → W} {B : U → V}
variables [HA : is_bdd_linear_map A] [HB : is_bdd_linear_map B]
variable {x : U}
include HU HV HW HA HB
theorem frechet_derivative_at_comp (Hg : is_frechet_deriv_at g B x) (Hf : is_frechet_deriv_at f A (g x)) :
@is_frechet_deriv_at _ _ _ _ (λ y, f (g y)) (λ y, A (B y)) !is_bdd_linear_map_comp x :=
begin
rewrite ↑is_frechet_deriv_at,
intros ε Hε,
end
end comp-/
end analysis