087c44d614
For example, the pointed suspension operation was called Susp before this commit, but now is called psusp
200 lines
7.7 KiB
Text
200 lines
7.7 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Floris van Doorn
|
|
|
|
Quotients. This is a quotient without truncation for an arbitrary type-valued binary relation.
|
|
See also .set_quotient
|
|
-/
|
|
|
|
/-
|
|
The hit quotient is primitive, declared in init.hit.
|
|
The constructors are, given {A : Type} (R : A → A → Type),
|
|
* class_of : A → quotient R (A implicit, R explicit)
|
|
* eq_of_rel : Π{a a' : A}, R a a' → class_of a = class_of a' (R explicit)
|
|
-/
|
|
|
|
import arity cubical.squareover types.arrow cubical.pathover2 types.pointed
|
|
|
|
open eq equiv sigma sigma.ops equiv.ops pi is_trunc pointed
|
|
|
|
namespace quotient
|
|
|
|
variables {A : Type} {R : A → A → Type}
|
|
|
|
protected definition elim {P : Type} (Pc : A → P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a')
|
|
(x : quotient R) : P :=
|
|
quotient.rec Pc (λa a' H, pathover_of_eq (Pp H)) x
|
|
|
|
protected definition elim_on [reducible] {P : Type} (x : quotient R)
|
|
(Pc : A → P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') : P :=
|
|
quotient.elim Pc Pp x
|
|
|
|
theorem elim_eq_of_rel {P : Type} (Pc : A → P)
|
|
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') {a a' : A} (H : R a a')
|
|
: ap (quotient.elim Pc Pp) (eq_of_rel R H) = Pp H :=
|
|
begin
|
|
apply eq_of_fn_eq_fn_inv !(pathover_constant (eq_of_rel R H)),
|
|
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑quotient.elim,rec_eq_of_rel],
|
|
end
|
|
|
|
protected definition rec_prop {A : Type} {R : A → A → Type} {P : quotient R → Type}
|
|
[H : Πx, is_prop (P x)] (Pc : Π(a : A), P (class_of R a)) (x : quotient R) : P x :=
|
|
quotient.rec Pc (λa a' H, !is_prop.elimo) x
|
|
|
|
protected definition elim_prop {P : Type} [H : is_prop P] (Pc : A → P) (x : quotient R) : P :=
|
|
quotient.elim Pc (λa a' H, !is_prop.elim) x
|
|
|
|
protected definition elim_type (Pc : A → Type)
|
|
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') : quotient R → Type :=
|
|
quotient.elim Pc (λa a' H, ua (Pp H))
|
|
|
|
protected definition elim_type_on [reducible] (x : quotient R) (Pc : A → Type)
|
|
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') : Type :=
|
|
quotient.elim_type Pc Pp x
|
|
|
|
theorem elim_type_eq_of_rel_fn (Pc : A → Type)
|
|
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a')
|
|
: transport (quotient.elim_type Pc Pp) (eq_of_rel R H) = to_fun (Pp H) :=
|
|
by rewrite [tr_eq_cast_ap_fn, ↑quotient.elim_type, elim_eq_of_rel];apply cast_ua_fn
|
|
|
|
theorem elim_type_eq_of_rel.{u} (Pc : A → Type.{u})
|
|
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a') (p : Pc a)
|
|
: transport (quotient.elim_type Pc Pp) (eq_of_rel R H) p = to_fun (Pp H) p :=
|
|
ap10 (elim_type_eq_of_rel_fn Pc Pp H) p
|
|
|
|
definition elim_type_eq_of_rel' (Pc : A → Type)
|
|
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a') (p : Pc a)
|
|
: pathover (quotient.elim_type Pc Pp) p (eq_of_rel R H) (to_fun (Pp H) p) :=
|
|
pathover_of_tr_eq (elim_type_eq_of_rel Pc Pp H p)
|
|
|
|
definition elim_type_uncurried (H : Σ(Pc : A → Type), Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a')
|
|
: quotient R → Type :=
|
|
quotient.elim_type H.1 H.2
|
|
end quotient
|
|
|
|
attribute quotient.rec [recursor]
|
|
attribute quotient.elim [unfold 6] [recursor 6]
|
|
attribute quotient.elim_type [unfold 5]
|
|
attribute quotient.elim_on [unfold 4]
|
|
attribute quotient.elim_type_on [unfold 3]
|
|
|
|
namespace quotient
|
|
|
|
section
|
|
variables {A : Type} (R : A → A → Type)
|
|
|
|
/- The dependent universal property -/
|
|
definition quotient_pi_equiv (C : quotient R → Type) : (Πx, C x) ≃
|
|
(Σ(f : Π(a : A), C (class_of R a)), Π⦃a a' : A⦄ (H : R a a'), f a =[eq_of_rel R H] f a') :=
|
|
begin
|
|
fapply equiv.MK,
|
|
{ intro f, exact ⟨λa, f (class_of R a), λa a' H, apdo f (eq_of_rel R H)⟩},
|
|
{ intro v x, induction v with i p, induction x,
|
|
exact (i a),
|
|
exact (p H)},
|
|
{ intro v, induction v with i p, esimp,
|
|
apply ap (sigma.mk i), apply eq_of_homotopy3, intro a a' H, apply rec_eq_of_rel},
|
|
{ intro f, apply eq_of_homotopy, intro x, induction x: esimp,
|
|
apply eq_pathover_dep, esimp, rewrite rec_eq_of_rel, exact hrflo},
|
|
end
|
|
end
|
|
|
|
definition pquotient [constructor] {A : Type*} (R : A → A → Type) : Type* :=
|
|
pType.mk (quotient R) (class_of R pt)
|
|
|
|
/- the flattening lemma -/
|
|
|
|
namespace flattening
|
|
section
|
|
|
|
parameters {A : Type} (R : A → A → Type) (C : A → Type) (f : Π⦃a a'⦄, R a a' → C a ≃ C a')
|
|
include f
|
|
variables {a a' : A} {r : R a a'}
|
|
|
|
local abbreviation P [unfold 5] := quotient.elim_type C f
|
|
|
|
definition flattening_type : Type := Σa, C a
|
|
local abbreviation X := flattening_type
|
|
inductive flattening_rel : X → X → Type :=
|
|
| mk : Π⦃a a' : A⦄ (r : R a a') (c : C a), flattening_rel ⟨a, c⟩ ⟨a', f r c⟩
|
|
|
|
definition Ppt [constructor] (c : C a) : sigma P :=
|
|
⟨class_of R a, c⟩
|
|
|
|
definition Peq (r : R a a') (c : C a) : Ppt c = Ppt (f r c) :=
|
|
begin
|
|
fapply sigma_eq: esimp,
|
|
{ apply eq_of_rel R r},
|
|
{ refine elim_type_eq_of_rel' C f r c}
|
|
end
|
|
|
|
definition rec {Q : sigma P → Type} (Qpt : Π{a : A} (x : C a), Q (Ppt x))
|
|
(Qeq : Π⦃a a' : A⦄ (r : R a a') (c : C a), Qpt c =[Peq r c] Qpt (f r c))
|
|
(v : sigma P) : Q v :=
|
|
begin
|
|
induction v with q p,
|
|
induction q,
|
|
{ exact Qpt p},
|
|
{ apply pi_pathover_left', esimp, intro c,
|
|
refine _ ⬝op apd Qpt (elim_type_eq_of_rel C f H c)⁻¹ᵖ,
|
|
refine _ ⬝op (tr_compose Q Ppt _ _)⁻¹ ,
|
|
rewrite ap_inv,
|
|
refine pathover_cancel_right _ !tr_pathover⁻¹ᵒ,
|
|
refine change_path _ (Qeq H c),
|
|
symmetry, rewrite [↑[Ppt, Peq]],
|
|
refine whisker_left _ !ap_dpair ⬝ _,
|
|
refine !dpair_eq_dpair_con⁻¹ ⬝ _, esimp,
|
|
apply ap (dpair_eq_dpair _),
|
|
esimp [elim_type_eq_of_rel',pathover_idp_of_eq],
|
|
exact !pathover_of_tr_eq_eq_concato⁻¹},
|
|
end
|
|
|
|
definition elim {Q : Type} (Qpt : Π{a : A}, C a → Q)
|
|
(Qeq : Π⦃a a' : A⦄ (r : R a a') (c : C a), Qpt c = Qpt (f r c))
|
|
(v : sigma P) : Q :=
|
|
begin
|
|
induction v with q p,
|
|
induction q,
|
|
{ exact Qpt p},
|
|
{ apply arrow_pathover_constant_right, esimp,
|
|
intro c, exact Qeq H c ⬝ ap Qpt (elim_type_eq_of_rel C f H c)⁻¹},
|
|
end
|
|
|
|
theorem elim_Peq {Q : Type} (Qpt : Π{a : A}, C a → Q)
|
|
(Qeq : Π⦃a a' : A⦄ (r : R a a') (c : C a), Qpt c = Qpt (f r c)) {a a' : A} (r : R a a')
|
|
(c : C a) : ap (elim @Qpt Qeq) (Peq r c) = Qeq r c :=
|
|
begin
|
|
refine !ap_dpair_eq_dpair ⬝ _,
|
|
rewrite [apo011_eq_apo11_apdo, rec_eq_of_rel, ▸*, apo011_arrow_pathover_constant_right,
|
|
↑elim_type_eq_of_rel', to_right_inv !pathover_equiv_tr_eq, ap_inv],
|
|
apply inv_con_cancel_right
|
|
end
|
|
|
|
open flattening_rel
|
|
definition flattening_lemma : sigma P ≃ quotient flattening_rel :=
|
|
begin
|
|
fapply equiv.MK,
|
|
{ refine elim _ _,
|
|
{ intro a c, exact class_of _ ⟨a, c⟩},
|
|
{ intro a a' r c, apply eq_of_rel, constructor}},
|
|
{ intro q, induction q with x x x' H,
|
|
{ exact Ppt x.2},
|
|
{ induction H, esimp, apply Peq}},
|
|
{ intro q, induction q with x x x' H: esimp,
|
|
{ induction x with a c, reflexivity},
|
|
{ induction H, esimp, apply eq_pathover, apply hdeg_square,
|
|
refine ap_compose (elim _ _) (quotient.elim _ _) _ ⬝ _,
|
|
rewrite [elim_eq_of_rel, ap_id, ▸*],
|
|
apply elim_Peq}},
|
|
{ refine rec (λa x, idp) _, intros,
|
|
apply eq_pathover, apply hdeg_square,
|
|
refine ap_compose (quotient.elim _ _) (elim _ _) _ ⬝ _,
|
|
rewrite [elim_Peq, ap_id, ▸*],
|
|
apply elim_eq_of_rel}
|
|
end
|
|
|
|
end
|
|
end flattening
|
|
|
|
end quotient
|