dbaf81e16d
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
691 lines
26 KiB
Text
691 lines
26 KiB
Text
--- Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
||
--- Released under Apache 2.0 license as described in the file LICENSE.
|
||
--- Author: Jeremy Avigad
|
||
|
||
-- Theory nat2
|
||
-- ===========
|
||
--
|
||
-- This is a continuation of the development of the natural numbers, with a general way of
|
||
-- defining recursive functions, and definitions of div, mod, and gcd.
|
||
|
||
-- TODO: replace the two uses of "not_or" by a constructive version
|
||
|
||
import logic .sub struc.relation data.prod
|
||
import logic.axioms.funext -- is this really needed?
|
||
import tools.fake_simplifier
|
||
|
||
using nat relation relation.iff_ops prod
|
||
using fake_simplifier decidable
|
||
|
||
namespace nat
|
||
|
||
-- A general recursion principle
|
||
-- -----------------------------
|
||
--
|
||
-- Data:
|
||
--
|
||
-- dom, codom : Type
|
||
-- default : codom
|
||
-- measure : dom → ℕ
|
||
-- rec_val : dom → (dom → codom) → codom
|
||
--
|
||
-- and a proof
|
||
--
|
||
-- rec_decreasing : ∀m, m ≥ measure x, rec_val x f = rec_val x (restrict f m)
|
||
--
|
||
-- ... which says that the recursive call only depends on f at values with measure less than x,
|
||
-- in the sense that changing other values to the default value doesn't change the result.
|
||
--
|
||
-- The result is a function f = rec_measure, satisfying
|
||
--
|
||
-- f x = rec_val x f
|
||
|
||
definition restrict {dom codom : Type} (default : codom) (measure : dom → ℕ) (f : dom → codom)
|
||
(m : ℕ) (x : dom) :=
|
||
if measure x < m then f x else default
|
||
|
||
theorem restrict_lt_eq {dom codom : Type} (default : codom) (measure : dom → ℕ) (f : dom → codom)
|
||
(m : ℕ) (x : dom) (H : measure x < m) :
|
||
restrict default measure f m x = f x :=
|
||
if_pos H _ _
|
||
|
||
theorem restrict_not_lt_eq {dom codom : Type} (default : codom) (measure : dom → ℕ)
|
||
(f : dom → codom) (m : ℕ) (x : dom) (H : ¬ measure x < m) :
|
||
restrict default measure f m x = default :=
|
||
if_neg H _ _
|
||
|
||
definition rec_measure_aux {dom codom : Type} (default : codom) (measure : dom → ℕ)
|
||
(rec_val : dom → (dom → codom) → codom) : ℕ → dom → codom :=
|
||
nat_rec (λx, default) (λm g x, if measure x < succ m then rec_val x g else default)
|
||
|
||
definition rec_measure {dom codom : Type} (default : codom) (measure : dom → ℕ)
|
||
(rec_val : dom → (dom → codom) → codom) (x : dom) : codom :=
|
||
rec_measure_aux default measure rec_val (succ (measure x)) x
|
||
|
||
-- TODO: is funext really needed here?
|
||
theorem rec_measure_aux_spec {dom codom : Type} (default : codom) (measure : dom → ℕ)
|
||
(rec_val : dom → (dom → codom) → codom)
|
||
(rec_decreasing : ∀g m x, m ≥ measure x →
|
||
rec_val x g = rec_val x (restrict default measure g m))
|
||
(m : ℕ) :
|
||
let f' := rec_measure_aux default measure rec_val in
|
||
let f := rec_measure default measure rec_val in
|
||
f' m = restrict default measure f m :=
|
||
-- TODO: note the use of (need for) inline here
|
||
let f' := rec_measure_aux default measure rec_val in
|
||
let f := rec_measure default measure rec_val in
|
||
case_strong_induction_on m
|
||
(have H1 : f' 0 = (λx, default), from rfl,
|
||
have H2 : restrict default measure f 0 = (λx, default), from
|
||
funext
|
||
(take x,
|
||
have H3 [fact]: ¬ measure x < 0, from not_lt_zero _,
|
||
show restrict default measure f 0 x = default, from if_neg H3 _ _),
|
||
show f' 0 = restrict default measure f 0, from trans H1 (symm H2))
|
||
(take m,
|
||
assume IH: ∀n, n ≤ m → f' n = restrict default measure f n,
|
||
funext
|
||
(take x : dom,
|
||
show f' (succ m) x = restrict default measure f (succ m) x, from
|
||
by_cases -- (measure x < succ m)
|
||
(assume H1 : measure x < succ m,
|
||
have H2 [fact] : f' (succ m) x = rec_val x f, from
|
||
calc
|
||
f' (succ m) x = if measure x < succ m then rec_val x (f' m) else default : rfl
|
||
... = rec_val x (f' m) : if_pos H1 _ _
|
||
... = rec_val x (restrict default measure f m) : {IH m (le_refl m)}
|
||
... = rec_val x f : symm (rec_decreasing _ _ _ (lt_succ_imp_le H1)),
|
||
have H3 : restrict default measure f (succ m) x = rec_val x f, from
|
||
let m' := measure x in
|
||
calc
|
||
restrict default measure f (succ m) x = f x : if_pos H1 _ _
|
||
... = f' (succ m') x : refl _
|
||
... = if measure x < succ m' then rec_val x (f' m') else default : rfl
|
||
... = rec_val x (f' m') : if_pos (self_lt_succ _) _ _
|
||
... = rec_val x (restrict default measure f m') : {IH m' (lt_succ_imp_le H1)}
|
||
... = rec_val x f : symm (rec_decreasing _ _ _ (le_refl _)),
|
||
show f' (succ m) x = restrict default measure f (succ m) x,
|
||
from trans H2 (symm H3))
|
||
(assume H1 : ¬ measure x < succ m,
|
||
have H2 : f' (succ m) x = default, from
|
||
calc
|
||
f' (succ m) x = if measure x < succ m then rec_val x (f' m) else default : rfl
|
||
... = default : if_neg H1 _ _,
|
||
have H3 : restrict default measure f (succ m) x = default,
|
||
from if_neg H1 _ _,
|
||
show f' (succ m) x = restrict default measure f (succ m) x,
|
||
from trans H2 (symm H3))))
|
||
|
||
theorem rec_measure_spec {dom codom : Type} {default : codom} {measure : dom → ℕ}
|
||
(rec_val : dom → (dom → codom) → codom)
|
||
(rec_decreasing : ∀g m x, m ≥ measure x →
|
||
rec_val x g = rec_val x (restrict default measure g m))
|
||
(x : dom):
|
||
let f := rec_measure default measure rec_val in
|
||
f x = rec_val x f :=
|
||
let f' := rec_measure_aux default measure rec_val in
|
||
let f := rec_measure default measure rec_val in
|
||
let m := measure x in
|
||
calc
|
||
f x = f' (succ m) x : refl _
|
||
... = if measure x < succ m then rec_val x (f' m) else default : rfl
|
||
... = rec_val x (f' m) : if_pos (self_lt_succ _) _ _
|
||
... = rec_val x (restrict default measure f m) : {rec_measure_aux_spec _ _ _ rec_decreasing _}
|
||
... = rec_val x f : symm (rec_decreasing _ _ _ (le_refl _))
|
||
|
||
|
||
-- Div and mod
|
||
-- -----------
|
||
|
||
-- ### the definition of div
|
||
|
||
-- for fixed y, recursive call for x div y
|
||
definition div_aux_rec (y : ℕ) (x : ℕ) (div_aux' : ℕ → ℕ) : ℕ :=
|
||
if (y = 0 ∨ x < y) then 0 else succ (div_aux' (x - y))
|
||
|
||
definition div_aux (y : ℕ) : ℕ → ℕ := rec_measure 0 (fun x, x) (div_aux_rec y)
|
||
|
||
theorem div_aux_decreasing (y : ℕ) (g : ℕ → ℕ) (m : ℕ) (x : ℕ) (H : m ≥ x) :
|
||
div_aux_rec y x g = div_aux_rec y x (restrict 0 (fun x, x) g m) :=
|
||
let lhs := div_aux_rec y x g in
|
||
let rhs := div_aux_rec y x (restrict 0 (fun x, x) g m) in
|
||
show lhs = rhs, from
|
||
by_cases -- (y = 0 ∨ x < y)
|
||
(assume H1 : y = 0 ∨ x < y,
|
||
calc
|
||
lhs = 0 : if_pos H1 _ _
|
||
... = rhs : symm (if_pos H1 _ _))
|
||
(assume H1 : ¬ (y = 0 ∨ x < y),
|
||
have H2 : y ≠ 0 ∧ ¬ x < y, from sorry, -- subst (not_or _ _) H1,
|
||
have ypos : y > 0, from ne_zero_imp_pos (and_elim_left H2),
|
||
have xgey : x ≥ y, from not_lt_imp_ge (and_elim_right H2),
|
||
have H4 : x - y < x, from sub_lt (lt_le_trans ypos xgey) ypos,
|
||
have H5 : x - y < m, from lt_le_trans H4 H,
|
||
symm (calc
|
||
rhs = succ (restrict 0 (fun x, x) g m (x - y)) : if_neg H1 _ _
|
||
... = succ (g (x - y)) : {restrict_lt_eq _ _ _ _ _ H5}
|
||
... = lhs : symm (if_neg H1 _ _)))
|
||
|
||
theorem div_aux_spec (y : ℕ) (x : ℕ) :
|
||
div_aux y x = if (y = 0 ∨ x < y) then 0 else succ (div_aux y (x - y)) :=
|
||
rec_measure_spec (div_aux_rec y) (div_aux_decreasing y) x
|
||
|
||
definition idivide (x : ℕ) (y : ℕ) : ℕ := div_aux y x
|
||
|
||
infixl `div` := idivide -- copied from Isabelle
|
||
|
||
theorem div_zero (x : ℕ) : x div 0 = 0 :=
|
||
trans (div_aux_spec _ _) (if_pos (or_intro_left _ (refl _)) _ _)
|
||
|
||
-- add_rewrite div_zero
|
||
|
||
theorem div_less {x y : ℕ} (H : x < y) : x div y = 0 :=
|
||
trans (div_aux_spec _ _) (if_pos (or_intro_right _ H) _ _)
|
||
|
||
-- add_rewrite div_less
|
||
|
||
theorem zero_div (y : ℕ) : 0 div y = 0 :=
|
||
case y (div_zero 0) (take y', div_less (succ_pos _))
|
||
|
||
-- add_rewrite zero_div
|
||
|
||
theorem div_rec {x y : ℕ} (H1 : y > 0) (H2 : x ≥ y) : x div y = succ ((x - y) div y) :=
|
||
have H3 : ¬ (y = 0 ∨ x < y), from
|
||
not_intro
|
||
(assume H4 : y = 0 ∨ x < y,
|
||
or_elim H4
|
||
(assume H5 : y = 0, not_elim (lt_irrefl _) (subst H5 H1))
|
||
(assume H5 : x < y, not_elim (lt_imp_not_ge H5) H2)),
|
||
trans (div_aux_spec _ _) (if_neg H3 _ _)
|
||
|
||
theorem div_add_self_right (x : ℕ) {z : ℕ} (H : z > 0) : (x + z) div z = succ (x div z) :=
|
||
have H1 : z ≤ x + z, by simp,
|
||
let H2 := div_rec H H1 in
|
||
by simp
|
||
|
||
theorem div_add_mul_self_right (x y : ℕ) {z : ℕ} (H : z > 0) : (x + y * z) div z = x div z + y :=
|
||
induction_on y (by simp)
|
||
(take y,
|
||
assume IH : (x + y * z) div z = x div z + y,
|
||
calc
|
||
(x + succ y * z) div z = (x + y * z + z) div z : by simp
|
||
... = succ ((x + y * z) div z) : div_add_self_right _ H
|
||
... = x div z + succ y : by simp)
|
||
|
||
|
||
-- ### The definition of mod
|
||
|
||
-- for fixed y, recursive call for x mod y
|
||
definition mod_aux_rec (y : ℕ) (x : ℕ) (mod_aux' : ℕ → ℕ) : ℕ :=
|
||
if (y = 0 ∨ x < y) then x else mod_aux' (x - y)
|
||
|
||
definition mod_aux (y : ℕ) : ℕ → ℕ := rec_measure 0 (fun x, x) (mod_aux_rec y)
|
||
|
||
theorem mod_aux_decreasing (y : ℕ) (g : ℕ → ℕ) (m : ℕ) (x : ℕ) (H : m ≥ x) :
|
||
mod_aux_rec y x g = mod_aux_rec y x (restrict 0 (fun x, x) g m) :=
|
||
let lhs := mod_aux_rec y x g in
|
||
let rhs := mod_aux_rec y x (restrict 0 (fun x, x) g m) in
|
||
show lhs = rhs, from
|
||
by_cases -- (y = 0 ∨ x < y)
|
||
(assume H1 : y = 0 ∨ x < y,
|
||
calc
|
||
lhs = x : if_pos H1 _ _
|
||
... = rhs : symm (if_pos H1 _ _))
|
||
(assume H1 : ¬ (y = 0 ∨ x < y),
|
||
have H2 : y ≠ 0 ∧ ¬ x < y, from sorry, -- subst (not_or _ _) H1,
|
||
have ypos : y > 0, from ne_zero_imp_pos (and_elim_left H2),
|
||
have xgey : x ≥ y, from not_lt_imp_ge (and_elim_right H2),
|
||
have H4 : x - y < x, from sub_lt (lt_le_trans ypos xgey) ypos,
|
||
have H5 : x - y < m, from lt_le_trans H4 H,
|
||
symm (calc
|
||
rhs = restrict 0 (fun x, x) g m (x - y) : if_neg H1 _ _
|
||
... = g (x - y) : restrict_lt_eq _ _ _ _ _ H5
|
||
... = lhs : symm (if_neg H1 _ _)))
|
||
|
||
theorem mod_aux_spec (y : ℕ) (x : ℕ) :
|
||
mod_aux y x = if (y = 0 ∨ x < y) then x else mod_aux y (x - y) :=
|
||
rec_measure_spec (mod_aux_rec y) (mod_aux_decreasing y) x
|
||
|
||
definition modulo (x : ℕ) (y : ℕ) : ℕ := mod_aux y x
|
||
|
||
infixl `mod` := modulo
|
||
|
||
theorem mod_zero (x : ℕ) : x mod 0 = x :=
|
||
trans (mod_aux_spec _ _) (if_pos (or_intro_left _ (refl _)) _ _)
|
||
|
||
-- add_rewrite mod_zero
|
||
|
||
theorem mod_lt_eq {x y : ℕ} (H : x < y) : x mod y = x :=
|
||
trans (mod_aux_spec _ _) (if_pos (or_intro_right _ H) _ _)
|
||
|
||
-- add_rewrite mod_lt_eq
|
||
|
||
theorem zero_mod (y : ℕ) : 0 mod y = 0 :=
|
||
case y (mod_zero 0) (take y', mod_lt_eq (succ_pos _))
|
||
|
||
-- add_rewrite zero_mod
|
||
|
||
theorem mod_rec {x y : ℕ} (H1 : y > 0) (H2 : x ≥ y) : x mod y = (x - y) mod y :=
|
||
have H3 : ¬ (y = 0 ∨ x < y), from
|
||
not_intro
|
||
(assume H4 : y = 0 ∨ x < y,
|
||
or_elim H4
|
||
(assume H5 : y = 0, not_elim (lt_irrefl _) (subst H5 H1))
|
||
(assume H5 : x < y, not_elim (lt_imp_not_ge H5) H2)),
|
||
trans (mod_aux_spec _ _) (if_neg H3 _ _)
|
||
|
||
-- need more of these, add as rewrite rules
|
||
theorem mod_add_self_right (x : ℕ) {z : ℕ} (H : z > 0) : (x + z) mod z = x mod z :=
|
||
have H1 : z ≤ x + z, by simp,
|
||
let H2 := mod_rec H H1 in
|
||
by simp
|
||
|
||
theorem mod_add_mul_self_right (x y : ℕ) {z : ℕ} (H : z > 0) : (x + y * z) mod z = x mod z :=
|
||
induction_on y (by simp)
|
||
(take y,
|
||
assume IH : (x + y * z) mod z = x mod z,
|
||
calc
|
||
(x + succ y * z) mod z = (x + y * z + z) mod z : by simp
|
||
... = (x + y * z) mod z : mod_add_self_right _ H
|
||
... = x mod z : IH)
|
||
|
||
theorem mod_mul_self_right (m n : ℕ) : (m * n) mod n = 0 :=
|
||
case_zero_pos n (by simp)
|
||
(take n,
|
||
assume npos : n > 0,
|
||
subst (by simp) (mod_add_mul_self_right 0 m npos))
|
||
|
||
-- add_rewrite mod_mul_self_right
|
||
|
||
theorem mod_mul_self_left (m n : ℕ) : (m * n) mod m = 0 :=
|
||
subst (mul_comm _ _) (mod_mul_self_right _ _)
|
||
|
||
-- add_rewrite mod_mul_self_left
|
||
|
||
-- ### properties of div and mod together
|
||
|
||
theorem mod_lt (x : ℕ) {y : ℕ} (H : y > 0) : x mod y < y :=
|
||
case_strong_induction_on x
|
||
(show 0 mod y < y, from subst (symm (zero_mod _)) H)
|
||
(take x,
|
||
assume IH : ∀x', x' ≤ x → x' mod y < y,
|
||
show succ x mod y < y, from
|
||
by_cases -- (succ x < y)
|
||
(assume H1 : succ x < y,
|
||
have H2 : succ x mod y = succ x, from mod_lt_eq H1,
|
||
show succ x mod y < y, from subst (symm H2) H1)
|
||
(assume H1 : ¬ succ x < y,
|
||
have H2 : y ≤ succ x, from not_lt_imp_ge H1,
|
||
have H3 : succ x mod y = (succ x - y) mod y, from mod_rec H H2,
|
||
have H4 : succ x - y < succ x, from sub_lt (succ_pos _) H,
|
||
have H5 : succ x - y ≤ x, from lt_succ_imp_le H4,
|
||
show succ x mod y < y, from subst (symm H3) (IH _ H5)))
|
||
|
||
theorem div_mod_eq (x y : ℕ) : x = x div y * y + x mod y :=
|
||
case_zero_pos y
|
||
(show x = x div 0 * 0 + x mod 0, from
|
||
symm (calc
|
||
x div 0 * 0 + x mod 0 = 0 + x mod 0 : {mul_zero_right _}
|
||
... = x mod 0 : add_zero_left _
|
||
... = x : mod_zero _))
|
||
(take y,
|
||
assume H : y > 0,
|
||
show x = x div y * y + x mod y, from
|
||
case_strong_induction_on x
|
||
(show 0 = (0 div y) * y + 0 mod y, by simp)
|
||
(take x,
|
||
assume IH : ∀x', x' ≤ x → x' = x' div y * y + x' mod y,
|
||
show succ x = succ x div y * y + succ x mod y, from
|
||
by_cases -- (succ x < y)
|
||
(assume H1 : succ x < y,
|
||
have H2 : succ x div y = 0, from div_less H1,
|
||
have H3 : succ x mod y = succ x, from mod_lt_eq H1,
|
||
by simp)
|
||
(assume H1 : ¬ succ x < y,
|
||
have H2 : y ≤ succ x, from not_lt_imp_ge H1,
|
||
have H3 : succ x div y = succ ((succ x - y) div y), from div_rec H H2,
|
||
have H4 : succ x mod y = (succ x - y) mod y, from mod_rec H H2,
|
||
have H5 : succ x - y < succ x, from sub_lt (succ_pos _) H,
|
||
have H6 : succ x - y ≤ x, from lt_succ_imp_le H5,
|
||
symm (calc
|
||
succ x div y * y + succ x mod y = succ ((succ x - y) div y) * y + succ x mod y :
|
||
{H3}
|
||
... = ((succ x - y) div y) * y + y + succ x mod y : {mul_succ_left _ _}
|
||
... = ((succ x - y) div y) * y + y + (succ x - y) mod y : {H4}
|
||
... = ((succ x - y) div y) * y + (succ x - y) mod y + y : add_right_comm _ _ _
|
||
... = succ x - y + y : {symm (IH _ H6)}
|
||
... = succ x : add_sub_ge_left H2))))
|
||
|
||
theorem mod_le (x y : ℕ) : x mod y ≤ x :=
|
||
subst (symm (div_mod_eq _ _)) (le_add_left (x mod y) _)
|
||
|
||
--- a good example where simplifying using the context causes problems
|
||
theorem remainder_unique {y : ℕ} (H : y > 0) {q1 r1 q2 r2 : ℕ} (H1 : r1 < y) (H2 : r2 < y)
|
||
(H3 : q1 * y + r1 = q2 * y + r2) : r1 = r2 :=
|
||
calc
|
||
r1 = r1 mod y : by simp
|
||
... = (r1 + q1 * y) mod y : symm (mod_add_mul_self_right _ _ H)
|
||
... = (q1 * y + r1) mod y : {add_comm _ _}
|
||
... = (r2 + q2 * y) mod y : by simp
|
||
... = r2 mod y : mod_add_mul_self_right _ _ H
|
||
... = r2 : by simp
|
||
|
||
theorem quotient_unique {y : ℕ} (H : y > 0) {q1 r1 q2 r2 : ℕ} (H1 : r1 < y) (H2 : r2 < y)
|
||
(H3 : q1 * y + r1 = q2 * y + r2) : q1 = q2 :=
|
||
have H4 : q1 * y + r2 = q2 * y + r2, from subst (remainder_unique H H1 H2 H3) H3,
|
||
have H5 : q1 * y = q2 * y, from add_cancel_right H4,
|
||
have H6 : y > 0, from le_lt_trans (zero_le _) H1,
|
||
show q1 = q2, from mul_cancel_right H6 H5
|
||
|
||
theorem div_mul_mul {z : ℕ} (x y : ℕ) (zpos : z > 0) : (z * x) div (z * y) = x div y :=
|
||
by_cases -- (y = 0)
|
||
(assume H : y = 0, by simp)
|
||
(assume H : y ≠ 0,
|
||
have ypos : y > 0, from ne_zero_imp_pos H,
|
||
have zypos : z * y > 0, from mul_pos zpos ypos,
|
||
have H1 : (z * x) mod (z * y) < z * y, from mod_lt _ zypos,
|
||
have H2 : z * (x mod y) < z * y, from mul_lt_left zpos (mod_lt _ ypos),
|
||
quotient_unique zypos H1 H2
|
||
(calc
|
||
((z * x) div (z * y)) * (z * y) + (z * x) mod (z * y) = z * x : symm (div_mod_eq _ _)
|
||
... = z * (x div y * y + x mod y) : {div_mod_eq _ _}
|
||
... = z * (x div y * y) + z * (x mod y) : mul_distr_left _ _ _
|
||
... = (x div y) * (z * y) + z * (x mod y) : {mul_left_comm _ _ _}))
|
||
--- something wrong with the term order
|
||
--- ... = (x div y) * (z * y) + z * (x mod y) : by simp))
|
||
|
||
theorem mod_mul_mul {z : ℕ} (x y : ℕ) (zpos : z > 0) : (z * x) mod (z * y) = z * (x mod y) :=
|
||
by_cases -- (y = 0)
|
||
(assume H : y = 0, by simp)
|
||
(assume H : y ≠ 0,
|
||
have ypos : y > 0, from ne_zero_imp_pos H,
|
||
have zypos : z * y > 0, from mul_pos zpos ypos,
|
||
have H1 : (z * x) mod (z * y) < z * y, from mod_lt _ zypos,
|
||
have H2 : z * (x mod y) < z * y, from mul_lt_left zpos (mod_lt _ ypos),
|
||
remainder_unique zypos H1 H2
|
||
(calc
|
||
((z * x) div (z * y)) * (z * y) + (z * x) mod (z * y) = z * x : symm (div_mod_eq _ _)
|
||
... = z * (x div y * y + x mod y) : {div_mod_eq _ _}
|
||
... = z * (x div y * y) + z * (x mod y) : mul_distr_left _ _ _
|
||
... = (x div y) * (z * y) + z * (x mod y) : {mul_left_comm _ _ _}))
|
||
|
||
theorem mod_one (x : ℕ) : x mod 1 = 0 :=
|
||
have H1 : x mod 1 < 1, from mod_lt _ (succ_pos 0),
|
||
le_zero (lt_succ_imp_le H1)
|
||
|
||
-- add_rewrite mod_one
|
||
|
||
theorem mod_self (n : ℕ) : n mod n = 0 :=
|
||
case n (by simp)
|
||
(take n,
|
||
have H : (succ n * 1) mod (succ n * 1) = succ n * (1 mod 1),
|
||
from mod_mul_mul 1 1 (succ_pos n),
|
||
subst (by simp) H)
|
||
|
||
-- add_rewrite mod_self
|
||
|
||
theorem div_one (n : ℕ) : n div 1 = n :=
|
||
have H : n div 1 * 1 + n mod 1 = n, from symm (div_mod_eq n 1),
|
||
subst (by simp) H
|
||
|
||
-- add_rewrite div_one
|
||
|
||
theorem pos_div_self {n : ℕ} (H : n > 0) : n div n = 1 :=
|
||
have H1 : (n * 1) div (n * 1) = 1 div 1, from div_mul_mul 1 1 H,
|
||
subst (by simp) H1
|
||
|
||
-- add_rewrite pos_div_self
|
||
|
||
-- Divides
|
||
-- -------
|
||
|
||
definition dvd (x y : ℕ) : Prop := y mod x = 0
|
||
|
||
infix `|` := dvd
|
||
|
||
theorem dvd_iff_mod_eq_zero (x y : ℕ) : x | y ↔ y mod x = 0 :=
|
||
refl _
|
||
|
||
theorem dvd_imp_div_mul_eq {x y : ℕ} (H : y | x) : x div y * y = x :=
|
||
symm (calc
|
||
x = x div y * y + x mod y : div_mod_eq _ _
|
||
... = x div y * y + 0 : {mp (dvd_iff_mod_eq_zero _ _) H}
|
||
... = x div y * y : add_zero_right _)
|
||
|
||
-- add_rewrite dvd_imp_div_mul_eq
|
||
|
||
theorem mul_eq_imp_dvd {z x y : ℕ} (H : z * y = x) : y | x :=
|
||
have H1 : z * y = x mod y + x div y * y, from trans (trans H (div_mod_eq x y)) (add_comm _ _),
|
||
have H2 : (z - x div y) * y = x mod y, from
|
||
calc
|
||
(z - x div y) * y = z * y - x div y * y : mul_sub_distr_right _ _ _
|
||
... = x mod y + x div y * y - x div y * y : {H1}
|
||
... = x mod y : sub_add_left _ _,
|
||
show x mod y = 0, from
|
||
by_cases -- (y = 0)
|
||
(assume yz : y = 0,
|
||
have xz : x = 0, from
|
||
calc
|
||
x = z * y : symm H
|
||
... = z * 0 : {yz}
|
||
... = 0 : mul_zero_right _,
|
||
calc
|
||
x mod y = x mod 0 : {yz}
|
||
... = x : mod_zero _
|
||
... = 0 : xz)
|
||
(assume ynz : y ≠ 0,
|
||
have ypos : y > 0, from ne_zero_imp_pos ynz,
|
||
have H3 : (z - x div y) * y < y, from subst (symm H2) (mod_lt x ypos),
|
||
have H4 : (z - x div y) * y < 1 * y, from subst (symm (mul_one_left y)) H3,
|
||
have H5 : z - x div y < 1, from mul_lt_cancel_right H4,
|
||
have H6 : z - x div y = 0, from le_zero (lt_succ_imp_le H5),
|
||
calc
|
||
x mod y = (z - x div y) * y : symm H2
|
||
... = 0 * y : {H6}
|
||
... = 0 : mul_zero_left _)
|
||
|
||
theorem dvd_iff_exists_mul (x y : ℕ) : x | y ↔ ∃z, z * x = y :=
|
||
iff_intro
|
||
(assume H : x | y,
|
||
show ∃z, z * x = y, from exists_intro _ (dvd_imp_div_mul_eq H))
|
||
(assume H : ∃z, z * x = y,
|
||
obtain (z : ℕ) (zx_eq : z * x = y), from H,
|
||
show x | y, from mul_eq_imp_dvd zx_eq)
|
||
|
||
theorem dvd_zero (n : ℕ) : n | 0 := sorry
|
||
-- (by simp) (dvd_iff_mod_eq_zero n 0)
|
||
|
||
-- add_rewrite dvd_zero
|
||
|
||
theorem zero_dvd_iff {n : ℕ} : (0 | n) = (n = 0) := sorry
|
||
-- (by simp) (dvd_iff_mod_eq_zero 0 n)
|
||
|
||
-- add_rewrite zero_dvd_iff
|
||
|
||
theorem one_dvd (n : ℕ) : 1 | n := sorry
|
||
-- (by simp) (dvd_iff_mod_eq_zero 1 n)
|
||
|
||
-- add_rewrite one_dvd
|
||
|
||
theorem dvd_self (n : ℕ) : n | n := sorry
|
||
-- (by simp) (dvd_iff_mod_eq_zero n n)
|
||
|
||
-- add_rewrite dvd_self
|
||
|
||
theorem dvd_mul_self_left (m n : ℕ) : m | (m * n) := sorry
|
||
-- (by simp) (dvd_iff_mod_eq_zero m (m * n))
|
||
|
||
-- add_rewrite dvd_mul_self_left
|
||
|
||
theorem dvd_mul_self_right (m n : ℕ) : m | (n * m) := sorry
|
||
-- (by simp) (dvd_iff_mod_eq_zero m (n * m))
|
||
|
||
-- add_rewrite dvd_mul_self_left
|
||
|
||
theorem dvd_trans {m n k : ℕ} (H1 : m | n) (H2 : n | k) : m | k :=
|
||
have H3 : n = n div m * m, by simp,
|
||
have H4 : k = k div n * (n div m) * m, from
|
||
calc
|
||
k = k div n * n : by simp
|
||
... = k div n * (n div m * m) : {H3}
|
||
... = k div n * (n div m) * m : symm (mul_assoc _ _ _),
|
||
mp (symm (dvd_iff_exists_mul _ _)) (exists_intro (k div n * (n div m)) (symm H4))
|
||
|
||
theorem dvd_add {m n1 n2 : ℕ} (H1 : m | n1) (H2 : m | n2) : m | (n1 + n2) :=
|
||
have H : (n1 div m + n2 div m) * m = n1 + n2, by simp,
|
||
mp (symm (dvd_iff_exists_mul _ _)) (exists_intro _ H)
|
||
|
||
theorem dvd_add_cancel_left {m n1 n2 : ℕ} : m | (n1 + n2) → m | n1 → m | n2 :=
|
||
case_zero_pos m
|
||
(assume H1 : 0 | n1 + n2,
|
||
assume H2 : 0 | n1,
|
||
have H3 : n1 + n2 = 0, from subst zero_dvd_iff H1,
|
||
have H4 : n1 = 0, from subst zero_dvd_iff H2,
|
||
have H5 : n2 = 0, from mp (by simp) (subst H4 H3),
|
||
show 0 | n2, by simp)
|
||
(take m,
|
||
assume mpos : m > 0,
|
||
assume H1 : m | (n1 + n2),
|
||
assume H2 : m | n1,
|
||
have H3 : n1 + n2 = n1 + n2 div m * m, from
|
||
calc
|
||
n1 + n2 = (n1 + n2) div m * m : by simp
|
||
... = (n1 div m * m + n2) div m * m : by simp
|
||
... = (n2 + n1 div m * m) div m * m : {add_comm _ _}
|
||
... = (n2 div m + n1 div m) * m : {div_add_mul_self_right _ _ mpos}
|
||
... = n2 div m * m + n1 div m * m : mul_distr_right _ _ _
|
||
... = n1 div m * m + n2 div m * m : add_comm _ _
|
||
... = n1 + n2 div m * m : by simp,
|
||
have H4 : n2 = n2 div m * m, from add_cancel_left H3,
|
||
mp (symm (dvd_iff_exists_mul _ _)) (exists_intro _ (symm H4)))
|
||
|
||
theorem dvd_add_cancel_right {m n1 n2 : ℕ} (H : m | (n1 + n2)) : m | n2 → m | n1 :=
|
||
dvd_add_cancel_left (subst (add_comm _ _) H)
|
||
|
||
theorem dvd_sub {m n1 n2 : ℕ} (H1 : m | n1) (H2 : m | n2) : m | (n1 - n2) :=
|
||
by_cases
|
||
(assume H3 : n1 ≥ n2,
|
||
have H4 : n1 = n1 - n2 + n2, from symm (add_sub_ge_left H3),
|
||
show m | n1 - n2, from dvd_add_cancel_right (subst H4 H1) H2)
|
||
(assume H3 : ¬ (n1 ≥ n2),
|
||
have H4 : n1 - n2 = 0, from le_imp_sub_eq_zero (lt_imp_le (not_le_imp_gt H3)),
|
||
show m | n1 - n2, from subst (symm H4) (dvd_zero _))
|
||
|
||
|
||
-- Gcd and lcm
|
||
-- -----------
|
||
|
||
-- ### definition of gcd
|
||
|
||
definition gcd_aux_measure (p : ℕ × ℕ) : ℕ :=
|
||
pr2 p
|
||
|
||
definition gcd_aux_rec (p : ℕ × ℕ) (gcd_aux' : ℕ × ℕ → ℕ) : ℕ :=
|
||
let x := pr1 p, y := pr2 p in
|
||
if y = 0 then x else gcd_aux' (pair y (x mod y))
|
||
|
||
definition gcd_aux : ℕ × ℕ → ℕ := rec_measure 0 gcd_aux_measure gcd_aux_rec
|
||
|
||
theorem gcd_aux_decreasing (g : ℕ × ℕ → ℕ) (m : ℕ) (p : ℕ × ℕ) (H : m ≥ gcd_aux_measure p) :
|
||
gcd_aux_rec p g = gcd_aux_rec p (restrict 0 gcd_aux_measure g m) :=
|
||
let x := pr1 p, y := pr2 p in
|
||
let p' := pair y (x mod y) in
|
||
let lhs := gcd_aux_rec p g in
|
||
let rhs := gcd_aux_rec p (restrict 0 gcd_aux_measure g m) in
|
||
show lhs = rhs, from
|
||
by_cases -- (y = 0)
|
||
(assume H1 : y = 0,
|
||
calc
|
||
lhs = x : if_pos H1 _ _
|
||
... = rhs : symm (if_pos H1 _ _))
|
||
(assume H1 : y ≠ 0,
|
||
have ypos : y > 0, from ne_zero_imp_pos H1,
|
||
have H2 : gcd_aux_measure p' = x mod y, from pr2_pair _ _,
|
||
have H3 : gcd_aux_measure p' < gcd_aux_measure p, from subst (symm H2) (mod_lt _ ypos),
|
||
have H4: gcd_aux_measure p' < m, from lt_le_trans H3 H,
|
||
symm (calc
|
||
rhs = restrict 0 gcd_aux_measure g m p' : if_neg H1 _ _
|
||
... = g p' : restrict_lt_eq _ _ _ _ _ H4
|
||
... = lhs : symm (if_neg H1 _ _)))
|
||
|
||
theorem gcd_aux_spec (p : ℕ × ℕ) : gcd_aux p =
|
||
let x := pr1 p, y := pr2 p in
|
||
if y = 0 then x else gcd_aux (pair y (x mod y)) :=
|
||
rec_measure_spec gcd_aux_rec gcd_aux_decreasing p
|
||
|
||
definition gcd (x y : ℕ) : ℕ := gcd_aux (pair x y)
|
||
|
||
theorem gcd_def (x y : ℕ) : gcd x y = if y = 0 then x else gcd y (x mod y) :=
|
||
let x' := pr1 (pair x y), y' := pr2 (pair x y) in
|
||
calc
|
||
gcd x y = if y' = 0 then x' else gcd_aux (pair y' (x' mod y'))
|
||
: gcd_aux_spec (pair x y)
|
||
... = if y = 0 then x else gcd y (x mod y) : refl _
|
||
|
||
theorem gcd_zero (x : ℕ) : gcd x 0 = x :=
|
||
trans (gcd_def x 0) (if_pos (refl _) _ _)
|
||
|
||
-- add_rewrite gcd_zero
|
||
|
||
theorem gcd_pos (m : ℕ) {n : ℕ} (H : n > 0) : gcd m n = gcd n (m mod n) :=
|
||
trans (gcd_def m n) (if_neg (pos_imp_ne_zero H) _ _)
|
||
|
||
theorem gcd_zero_left (x : ℕ) : gcd 0 x = x :=
|
||
case x (by simp) (take x, trans (gcd_def _ _) (by simp))
|
||
|
||
-- add_rewrite gcd_zero_left
|
||
|
||
theorem gcd_induct {P : ℕ → ℕ → Prop} (m n : ℕ) (H0 : ∀m, P m 0)
|
||
(H1 : ∀m n, 0 < n → P n (m mod n) → P m n) : P m n :=
|
||
have aux : ∀m, P m n, from
|
||
case_strong_induction_on n H0
|
||
(take n,
|
||
assume IH : ∀k, k ≤ n → ∀m, P m k,
|
||
take m,
|
||
have H2 : m mod succ n ≤ n, from lt_succ_imp_le (mod_lt _ (succ_pos _)),
|
||
have H3 : P (succ n) (m mod succ n), from IH _ H2 _,
|
||
show P m (succ n), from H1 _ _ (succ_pos _) H3),
|
||
aux m
|
||
|
||
theorem gcd_succ (m n : ℕ) : gcd m (succ n) = gcd (succ n) (m mod succ n) :=
|
||
trans (gcd_def _ _) (if_neg (succ_ne_zero n) _ _)
|
||
|
||
theorem gcd_one (n : ℕ) : gcd n 1 = 1 := sorry
|
||
-- (by simp) (gcd_succ n 0)
|
||
|
||
theorem gcd_self (n : ℕ) : gcd n n = n := sorry
|
||
-- case n (by simp) (take n, (by simp) (gcd_succ (succ n) n))
|
||
|
||
theorem gcd_dvd (m n : ℕ) : (gcd m n | m) ∧ (gcd m n | n) :=
|
||
gcd_induct m n
|
||
(take m,
|
||
show (gcd m 0 | m) ∧ (gcd m 0 | 0), by simp)
|
||
(take m n,
|
||
assume npos : 0 < n,
|
||
assume IH : (gcd n (m mod n) | n) ∧ (gcd n (m mod n) | (m mod n)),
|
||
have H : gcd n (m mod n) | (m div n * n + m mod n), from
|
||
dvd_add (dvd_trans (and_elim_left IH) (dvd_mul_self_right _ _)) (and_elim_right IH),
|
||
have H1 : gcd n (m mod n) | m, from subst (symm (div_mod_eq m n)) H,
|
||
have gcd_eq : gcd n (m mod n) = gcd m n, from symm (gcd_pos _ npos),
|
||
show (gcd m n | m) ∧ (gcd m n | n), from subst gcd_eq (and_intro H1 (and_elim_left IH)))
|
||
|
||
theorem gcd_dvd_left (m n : ℕ) : (gcd m n | m) := and_elim_left (gcd_dvd _ _)
|
||
|
||
theorem gcd_dvd_right (m n : ℕ) : (gcd m n | n) := and_elim_right (gcd_dvd _ _)
|
||
|
||
-- add_rewrite gcd_dvd_left gcd_dvd_right
|
||
|
||
theorem gcd_greatest {m n k : ℕ} : k | m → k | n → k | (gcd m n) :=
|
||
gcd_induct m n
|
||
(take m, assume H : k | m, sorry) -- by simp)
|
||
(take m n,
|
||
assume npos : n > 0,
|
||
assume IH : k | n → k | (m mod n) → k | gcd n (m mod n),
|
||
assume H1 : k | m,
|
||
assume H2 : k | n,
|
||
have H3 : k | m div n * n + m mod n, from subst (div_mod_eq m n) H1,
|
||
have H4 : k | m mod n, from dvd_add_cancel_left H3 (dvd_trans H2 (by simp)),
|
||
have gcd_eq : gcd n (m mod n) = gcd m n, from symm (gcd_pos _ npos),
|
||
show k | gcd m n, from subst gcd_eq (IH H2 H4))
|
||
|
||
end nat
|