lean2/hott/hit/pushout.hlean
Floris van Doorn 17ccc283a9 feat(hott): move basic theorems from colimit development to library.
Most notable changes:
rename apo011 -> apd011 and apd011 -> apdt011
make an argument of pathover_of_eq explicit
2016-07-09 10:20:22 -07:00

342 lines
13 KiB
Text

/-
Copyright (c) 2015-16 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Ulrik Buchholtz
Declaration and properties of the pushout
-/
import .quotient types.sigma types.arrow_2
open quotient eq sum equiv is_trunc
namespace pushout
section
parameters {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
local abbreviation A := BL + TR
inductive pushout_rel : A → A → Type :=
| Rmk : Π(x : TL), pushout_rel (inl (f x)) (inr (g x))
open pushout_rel
local abbreviation R := pushout_rel
definition pushout : Type := quotient R -- TODO: define this in root namespace
parameters {f g}
definition inl (x : BL) : pushout :=
class_of R (inl x)
definition inr (x : TR) : pushout :=
class_of R (inr x)
definition glue (x : TL) : inl (f x) = inr (g x) :=
eq_of_rel pushout_rel (Rmk f g x)
protected definition rec {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x))
(y : pushout) : P y :=
begin
induction y,
{ cases a,
apply Pinl,
apply Pinr},
{ cases H, apply Pglue}
end
protected definition rec_on [reducible] {P : pushout → Type} (y : pushout)
(Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x))
(Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x)) : P y :=
rec Pinl Pinr Pglue y
theorem rec_glue {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x))
(x : TL) : apd (rec Pinl Pinr Pglue) (glue x) = Pglue x :=
!rec_eq_of_rel
protected definition elim {P : Type} (Pinl : BL → P) (Pinr : TR → P)
(Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (y : pushout) : P :=
rec Pinl Pinr (λx, pathover_of_eq _ (Pglue x)) y
protected definition elim_on [reducible] {P : Type} (y : pushout) (Pinl : BL → P)
(Pinr : TR → P) (Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) : P :=
elim Pinl Pinr Pglue y
theorem elim_glue {P : Type} (Pinl : BL → P) (Pinr : TR → P)
(Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (x : TL)
: ap (elim Pinl Pinr Pglue) (glue x) = Pglue x :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant (glue x)),
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑pushout.elim,rec_glue],
end
protected definition elim_type (Pinl : BL → Type) (Pinr : TR → Type)
(Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) : pushout → Type :=
quotient.elim_type (sum.rec Pinl Pinr)
begin intro v v' r, induction r, apply Pglue end
protected definition elim_type_on [reducible] (y : pushout) (Pinl : BL → Type)
(Pinr : TR → Type) (Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) : Type :=
elim_type Pinl Pinr Pglue y
theorem elim_type_glue (Pinl : BL → Type) (Pinr : TR → Type)
(Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (x : TL)
: transport (elim_type Pinl Pinr Pglue) (glue x) = Pglue x :=
!elim_type_eq_of_rel_fn
theorem elim_type_glue_inv (Pinl : BL → Type) (Pinr : TR → Type)
(Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (x : TL)
: transport (elim_type Pinl Pinr Pglue) (glue x)⁻¹ = to_inv (Pglue x) :=
!elim_type_eq_of_rel_inv
protected definition rec_prop {P : pushout → Type} [H : Πx, is_prop (P x)]
(Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x)) (y : pushout) :=
rec Pinl Pinr (λx, !is_prop.elimo) y
protected definition elim_prop {P : Type} [H : is_prop P] (Pinl : BL → P) (Pinr : TR → P)
(y : pushout) : P :=
elim Pinl Pinr (λa, !is_prop.elim) y
end
end pushout
attribute pushout.inl pushout.inr [constructor]
attribute pushout.rec pushout.elim [unfold 10] [recursor 10]
attribute pushout.elim_type [unfold 9]
attribute pushout.rec_on pushout.elim_on [unfold 7]
attribute pushout.elim_type_on [unfold 6]
open sigma
namespace pushout
variables {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
/- The non-dependent universal property -/
definition pushout_arrow_equiv (C : Type)
: (pushout f g → C) ≃ (Σ(i : BL → C) (j : TR → C), Πc, i (f c) = j (g c)) :=
begin
fapply equiv.MK,
{ intro f, exact ⟨λx, f (inl x), λx, f (inr x), λx, ap f (glue x)⟩},
{ intro v x, induction v with i w, induction w with j p, induction x,
exact (i a), exact (j a), exact (p x)},
{ intro v, induction v with i w, induction w with j p, esimp,
apply ap (λp, ⟨i, j, p⟩), apply eq_of_homotopy, intro x, apply elim_glue},
{ intro f, apply eq_of_homotopy, intro x, induction x: esimp,
apply eq_pathover, apply hdeg_square, esimp, apply elim_glue},
end
/- glue squares -/
protected definition glue_square {x x' : TL} (p : x = x')
: square (glue x) (glue x') (ap inl (ap f p)) (ap inr (ap g p)) :=
by cases p; apply vrefl
end pushout
open function sigma.ops
namespace pushout
/- The flattening lemma -/
section
universe variable u
parameters {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
(Pinl : BL → Type.{u}) (Pinr : TR → Type.{u})
(Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x))
include Pglue
local abbreviation A := BL + TR
local abbreviation R : A → A → Type := pushout_rel f g
local abbreviation P [unfold 5] := pushout.elim_type Pinl Pinr Pglue
local abbreviation F : sigma (Pinl ∘ f) → sigma Pinl :=
λz, ⟨ f z.1 , z.2 ⟩
local abbreviation G : sigma (Pinl ∘ f) → sigma Pinr :=
λz, ⟨ g z.1 , Pglue z.1 z.2 ⟩
protected definition flattening : sigma P ≃ pushout F G :=
begin
apply equiv.trans !quotient.flattening.flattening_lemma,
fapply equiv.MK,
{ intro q, induction q with z z z' fr,
{ induction z with a p, induction a with x x,
{ exact inl ⟨x, p⟩ },
{ exact inr ⟨x, p⟩ } },
{ induction fr with a a' r p, induction r with x,
exact glue ⟨x, p⟩ } },
{ intro q, induction q with xp xp xp,
{ exact class_of _ ⟨sum.inl xp.1, xp.2⟩ },
{ exact class_of _ ⟨sum.inr xp.1, xp.2⟩ },
{ apply eq_of_rel, constructor } },
{ intro q, induction q with xp xp xp: induction xp with x p,
{ apply ap inl, reflexivity },
{ apply ap inr, reflexivity },
{ unfold F, unfold G, apply eq_pathover,
rewrite [ap_id,ap_compose' (quotient.elim _ _)],
krewrite elim_glue, krewrite elim_eq_of_rel, apply hrefl } },
{ intro q, induction q with z z z' fr,
{ induction z with a p, induction a with x x,
{ reflexivity },
{ reflexivity } },
{ induction fr with a a' r p, induction r with x,
esimp, apply eq_pathover,
rewrite [ap_id,ap_compose' (pushout.elim _ _ _)],
krewrite elim_eq_of_rel, krewrite elim_glue, apply hrefl } }
end
end
-- Commutativity of pushouts
section
variables {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
protected definition transpose [constructor] : pushout f g → pushout g f :=
begin
intro x, induction x, apply inr a, apply inl a, apply !glue⁻¹
end
--TODO prove without krewrite?
protected definition transpose_involutive (x : pushout f g) :
pushout.transpose g f (pushout.transpose f g x) = x :=
begin
induction x, apply idp, apply idp,
apply eq_pathover, refine _ ⬝hp !ap_id⁻¹,
refine !(ap_compose (pushout.transpose _ _)) ⬝ph _, esimp[pushout.transpose],
krewrite [elim_glue, ap_inv, elim_glue, inv_inv], apply hrfl
end
protected definition symm : pushout f g ≃ pushout g f :=
begin
fapply equiv.MK, do 2 exact !pushout.transpose,
do 2 (intro x; apply pushout.transpose_involutive),
end
end
-- Functoriality of pushouts
section
section lemmas
variables {X : Type} {x₀ x₁ x₂ x₃ : X}
(p : x₀ = x₁) (q : x₁ = x₂) (r : x₂ = x₃)
private definition is_equiv_functor_lemma₁
: (r ⬝ ((p ⬝ q ⬝ r)⁻¹ ⬝ p)) = q⁻¹ :=
by cases p; cases r; cases q; reflexivity
private definition is_equiv_functor_lemma₂
: (p ⬝ q ⬝ r)⁻¹ ⬝ (p ⬝ q) = r⁻¹ :=
by cases p; cases r; cases q; reflexivity
end lemmas
variables {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
{TL' BL' TR' : Type} (f' : TL' → BL') (g' : TL' → TR')
(tl : TL → TL') (bl : BL → BL') (tr : TR → TR')
(fh : bl ∘ f ~ f' ∘ tl) (gh : tr ∘ g ~ g' ∘ tl)
include fh gh
protected definition functor [reducible] : pushout f g → pushout f' g' :=
begin
intro x, induction x with a b z,
{ exact inl (bl a) },
{ exact inr (tr b) },
{ exact (ap inl (fh z)) ⬝ glue (tl z) ⬝ (ap inr (gh z)⁻¹) }
end
protected definition ap_functor_inl [reducible] {x x' : BL} (p : x = x')
: ap (pushout.functor f g f' g' tl bl tr fh gh) (ap inl p) = ap inl (ap bl p) :=
by cases p; reflexivity
protected definition ap_functor_inr [reducible] {x x' : TR} (p : x = x')
: ap (pushout.functor f g f' g' tl bl tr fh gh) (ap inr p) = ap inr (ap tr p) :=
by cases p; reflexivity
variables [ietl : is_equiv tl] [iebl : is_equiv bl] [ietr : is_equiv tr]
include ietl iebl ietr
open equiv is_equiv arrow
protected definition is_equiv_functor [instance]
: is_equiv (pushout.functor f g f' g' tl bl tr fh gh) :=
adjointify
(pushout.functor f g f' g' tl bl tr fh gh)
(pushout.functor f' g' f g tl⁻¹ bl⁻¹ tr⁻¹
(inv_commute_of_commute tl bl f f' fh)
(inv_commute_of_commute tl tr g g' gh))
abstract begin
intro x', induction x' with a' b' z',
{ apply ap inl, apply right_inv },
{ apply ap inr, apply right_inv },
{ apply eq_pathover,
rewrite [ap_id,ap_compose' (pushout.functor f g f' g' tl bl tr fh gh)],
krewrite elim_glue,
rewrite [ap_inv,ap_con,ap_inv],
krewrite [pushout.ap_functor_inr], rewrite ap_con,
krewrite [pushout.ap_functor_inl,elim_glue],
apply transpose,
apply move_top_of_right, apply move_top_of_left',
krewrite [-(ap_inv inl),-ap_con,-(ap_inv inr),-ap_con],
apply move_top_of_right, apply move_top_of_left',
krewrite [-ap_con,-(ap_inv inl),-ap_con],
rewrite ap_bot_inv_commute_of_commute,
apply eq_hconcat (ap02 inl
(is_equiv_functor_lemma₁
(right_inv bl (f' z'))
(ap f' (right_inv tl z')⁻¹)
(fh (tl⁻¹ z'))⁻¹)),
rewrite [ap_inv f',inv_inv],
rewrite ap_bot_inv_commute_of_commute,
refine hconcat_eq _ (ap02 inr
(is_equiv_functor_lemma₁
(right_inv tr (g' z'))
(ap g' (right_inv tl z')⁻¹)
(gh (tl⁻¹ z'))⁻¹))⁻¹,
rewrite [ap_inv g',inv_inv],
apply pushout.glue_square }
end end
abstract begin
intro x, induction x with a b z,
{ apply ap inl, apply left_inv },
{ apply ap inr, apply left_inv },
{ apply eq_pathover,
rewrite [ap_id,ap_compose'
(pushout.functor f' g' f g tl⁻¹ bl⁻¹ tr⁻¹ _ _)
(pushout.functor f g f' g' tl bl tr _ _)],
krewrite elim_glue,
rewrite [ap_inv,ap_con,ap_inv],
krewrite [pushout.ap_functor_inr], rewrite ap_con,
krewrite [pushout.ap_functor_inl,elim_glue],
apply transpose,
apply move_top_of_right, apply move_top_of_left',
krewrite [-(ap_inv inl),-ap_con,-(ap_inv inr),-ap_con],
apply move_top_of_right, apply move_top_of_left',
krewrite [-ap_con,-(ap_inv inl),-ap_con],
rewrite inv_commute_of_commute_top,
apply eq_hconcat (ap02 inl
(is_equiv_functor_lemma₂
(ap bl⁻¹ (fh z))⁻¹
(left_inv bl (f z))
(ap f (left_inv tl z)⁻¹))),
rewrite [ap_inv f,inv_inv],
rewrite inv_commute_of_commute_top,
refine hconcat_eq _ (ap02 inr
(is_equiv_functor_lemma₂
(ap tr⁻¹ (gh z))⁻¹
(left_inv tr (g z))
(ap g (left_inv tl z)⁻¹)))⁻¹,
rewrite [ap_inv g,inv_inv],
apply pushout.glue_square }
end end
end
/- version giving the equivalence -/
section
variables {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
{TL' BL' TR' : Type} (f' : TL' → BL') (g' : TL' → TR')
(tl : TL ≃ TL') (bl : BL ≃ BL') (tr : TR ≃ TR')
(fh : bl ∘ f ~ f' ∘ tl) (gh : tr ∘ g ~ g' ∘ tl)
include fh gh
protected definition equiv : pushout f g ≃ pushout f' g' :=
equiv.mk (pushout.functor f g f' g' tl bl tr fh gh) _
end
end pushout