82 lines
3.4 KiB
Text
82 lines
3.4 KiB
Text
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
|
-- Author: Leonardo de Moura, Jeremy Avigad
|
|
import logic.core.prop logic.core.inhabited logic.core.decidable
|
|
open inhabited decidable eq_ops
|
|
-- data.sum
|
|
-- ========
|
|
-- The sum type, aka disjoint union.
|
|
|
|
inductive sum (A B : Type) : Type :=
|
|
inl : A → sum A B,
|
|
inr : B → sum A B
|
|
|
|
namespace sum
|
|
infixr `⊎` := sum
|
|
namespace extra_notation
|
|
infixr `+`:25 := sum -- conflicts with notation for addition
|
|
end extra_notation
|
|
|
|
definition rec_on [protected] {A B : Type} {C : (A ⊎ B) → Type} (s : A ⊎ B)
|
|
(H1 : ∀a : A, C (inl B a)) (H2 : ∀b : B, C (inr A b)) : C s :=
|
|
rec H1 H2 s
|
|
|
|
definition cases_on [protected] {A B : Type} {P : (A ⊎ B) → Prop} (s : A ⊎ B)
|
|
(H1 : ∀a : A, P (inl B a)) (H2 : ∀b : B, P (inr A b)) : P s :=
|
|
rec H1 H2 s
|
|
|
|
-- Here is the trick for the theorems that follow:
|
|
-- Fixing a1, "f s" is a recursive description of "inl B a1 = s".
|
|
-- When s is (inl B a1), it reduces to a1 = a1.
|
|
-- When s is (inl B a2), it reduces to a1 = a2.
|
|
-- When s is (inr A b), it reduces to false.
|
|
|
|
theorem inl_inj {A B : Type} {a1 a2 : A} (H : inl B a1 = inl B a2) : a1 = a2 :=
|
|
let f := λs, rec_on s (λa, a1 = a) (λb, false) in
|
|
have H1 : f (inl B a1), from rfl,
|
|
have H2 : f (inl B a2), from H ▸ H1,
|
|
H2
|
|
|
|
theorem inl_neq_inr {A B : Type} {a : A} {b : B} (H : inl B a = inr A b) : false :=
|
|
let f := λs, rec_on s (λa', a = a') (λb, false) in
|
|
have H1 : f (inl B a), from rfl,
|
|
have H2 : f (inr A b), from H ▸ H1,
|
|
H2
|
|
|
|
theorem inr_inj {A B : Type} {b1 b2 : B} (H : inr A b1 = inr A b2) : b1 = b2 :=
|
|
let f := λs, rec_on s (λa, false) (λb, b1 = b) in
|
|
have H1 : f (inr A b1), from rfl,
|
|
have H2 : f (inr A b2), from H ▸ H1,
|
|
H2
|
|
|
|
theorem is_inhabited_left [protected] [instance] {A B : Type} (H : inhabited A) : inhabited (A ⊎ B) :=
|
|
inhabited.mk (inl B (default A))
|
|
|
|
theorem is_inhabited_right [protected] [instance] {A B : Type} (H : inhabited B) : inhabited (A ⊎ B) :=
|
|
inhabited.mk (inr A (default B))
|
|
|
|
theorem has_eq_decidable [protected] [instance] {A B : Type} (H1 : decidable_eq A) (H2 : decidable_eq B) :
|
|
decidable_eq (A ⊎ B) :=
|
|
take s1 s2 : A ⊎ B,
|
|
rec_on s1
|
|
(take a1, show decidable (inl B a1 = s2), from
|
|
rec_on s2
|
|
(take a2, show decidable (inl B a1 = inl B a2), from
|
|
decidable.rec_on (H1 a1 a2)
|
|
(assume Heq : a1 = a2, decidable.inl (Heq ▸ rfl))
|
|
(assume Hne : a1 ≠ a2, decidable.inr (mt inl_inj Hne)))
|
|
(take b2,
|
|
have H3 : (inl B a1 = inr A b2) ↔ false,
|
|
from iff.intro inl_neq_inr (assume H4, false_elim H4),
|
|
show decidable (inl B a1 = inr A b2), from decidable_iff_equiv _ (iff.symm H3)))
|
|
(take b1, show decidable (inr A b1 = s2), from
|
|
rec_on s2
|
|
(take a2,
|
|
have H3 : (inr A b1 = inl B a2) ↔ false,
|
|
from iff.intro (assume H4, inl_neq_inr (H4⁻¹)) (assume H4, false_elim H4),
|
|
show decidable (inr A b1 = inl B a2), from decidable_iff_equiv _ (iff.symm H3))
|
|
(take b2, show decidable (inr A b1 = inr A b2), from
|
|
decidable.rec_on (H2 b1 b2)
|
|
(assume Heq : b1 = b2, decidable.inl (Heq ▸ rfl))
|
|
(assume Hne : b1 ≠ b2, decidable.inr (mt inr_inj Hne))))
|
|
end sum
|