lean2/hott/algebra/graph.hlean
2018-09-11 19:25:32 +02:00

348 lines
14 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Graphs and operations on graphs
Currently we only define the notion of a path in a graph, and prove properties and operations on
paths.
-/
open eq sigma nat
/-
A path is a list of vertexes which are adjacent. We maybe use a weird ordering of cons, because
the major example where we use this is a category where this ordering makes more sense.
For the operations on paths we use the names from the corresponding operations on lists. Opening
both the list and the paths namespace will lead to many name clashes, so that is not advised.
-/
inductive paths {A : Type} (R : A → A → Type) : A → A → Type :=
| nil {} : Π{a : A}, paths R a a
| cons : Π{a₁ a₂ a₃ : A} (r : R a₂ a₃), paths R a₁ a₂ → paths R a₁ a₃
namespace paths
notation h :: t := cons h t
notation `[` l:(foldr `, ` (h t, cons h t) nil `]`) := l
variables {A : Type} {R : A → A → Type} {a a' a₁ a₂ a₃ a₄ : A}
definition concat (r : R a₁ a₂) (l : paths R a₂ a₃) : paths R a₁ a₃ :=
begin
induction l with a a₂ a₃ a₄ r' l IH,
{ exact [r]},
{ exact r' :: IH r}
end
theorem concat_nil (r : R a₁ a₂) : concat r (@nil A R a₂) = [r] := idp
theorem concat_cons (r : R a₁ a₂) (r' : R a₃ a₄) (l : paths R a₂ a₃)
: concat r (r'::l) = r'::(concat r l) := idp
definition append (l₂ : paths R a₂ a₃) (l₁ : paths R a₁ a₂) :
paths R a₁ a₃ :=
begin
induction l₂,
{ exact l₁},
{ exact cons r (v_0 l₁)}
end
infix ` ++ ` := append
definition nil_append (l : paths R a₁ a₂) : nil ++ l = l := idp
definition cons_append (r : R a₃ a₄) (l₂ : paths R a₂ a₃) (l₁ : paths R a₁ a₂) :
(r :: l₂) ++ l₁ = r :: (l₂ ++ l₁) := idp
definition singleton_append (r : R a₂ a₃) (l : paths R a₁ a₂) : [r] ++ l = r :: l := idp
definition append_singleton (l : paths R a₂ a₃) (r : R a₁ a₂) : l ++ [r] = concat r l :=
begin
induction l,
{ reflexivity},
{ exact ap (cons r) !v_0}
end
definition append_nil (l : paths R a₁ a₂) : l ++ nil = l :=
begin
induction l,
{ reflexivity},
{ exact ap (cons r) v_0}
end
definition append_assoc (l₃ : paths R a₃ a₄) (l₂ : paths R a₂ a₃)
(l₁ : paths R a₁ a₂) : (l₃ ++ l₂) ++ l₁ = l₃ ++ (l₂ ++ l₁) :=
begin
induction l₃,
{ reflexivity},
{ refine ap (cons r) !v_0}
end
theorem append_concat (l₂ : paths R a₃ a₄) (l₁ : paths R a₂ a₃) (r : R a₁ a₂) :
l₂ ++ concat r l₁ = concat r (l₂ ++ l₁) :=
begin
induction l₂,
{ reflexivity},
{ exact ap (cons r_1) !v_0}
end
theorem concat_append (l₂ : paths R a₃ a₄) (r : R a₂ a₃) (l₁ : paths R a₁ a₂) :
concat r l₂ ++ l₁ = l₂ ++ r :: l₁ :=
begin
induction l₂,
{ reflexivity},
{ exact ap (cons r) !v_0}
end
definition paths.rec_tail {C : Π⦃a a' : A⦄, paths R a a' → Type}
(H0 : Π {a : A}, @C a a nil)
(H1 : Π {a₁ a₂ a₃ : A} (r : R a₁ a₂) (l : paths R a₂ a₃), C l → C (concat r l)) :
Π{a a' : A} (l : paths R a a'), C l :=
begin
have Π{a₁ a₂ a₃ : A} (l₂ : paths R a₂ a₃) (l₁ : paths R a₁ a₂) (c : C l₂),
C (l₂ ++ l₁),
begin
intros, revert a₃ l₂ c, induction l₁: intros a₃ l₂ c,
{ rewrite append_nil, exact c},
{ rewrite [-concat_append], apply v_0, apply H1, exact c}
end,
intros, rewrite [-nil_append], apply this, apply H0
end
definition cons_eq_concat (r : R a₂ a₃) (l : paths R a₁ a₂) :
Σa (r' : R a₁ a) (l' : paths R a a₃), r :: l = concat r' l' :=
begin
revert a₃ r, induction l: intros a₃' r',
{ exact ⟨a₃', r', nil, idp⟩},
{ cases (v_0 a₃ r) with a₄ w, cases w with r₂ w, cases w with l p, clear v_0,
exact ⟨a₄, r₂, r' :: l, ap (cons r') p⟩}
end
definition length (l : paths R a₁ a₂) : :=
begin
induction l,
{ exact 0},
{ exact succ v_0}
end
/- If we can reverse edges in the graph we can reverse paths -/
definition reverse (rev : Π⦃a a'⦄, R a a' → R a' a) (l : paths R a₁ a₂) :
paths R a₂ a₁ :=
begin
induction l,
{ exact nil},
{ exact concat (rev r) v_0}
end
theorem reverse_nil (rev : Π⦃a a'⦄, R a a' → R a' a) : reverse rev (@nil A R a₁) = [] := idp
theorem reverse_cons (rev : Π⦃a a'⦄, R a a' → R a' a) (r : R a₂ a₃) (l : paths R a₁ a₂) :
reverse rev (r::l) = concat (rev r) (reverse rev l) := idp
theorem reverse_singleton (rev : Π⦃a a'⦄, R a a' → R a' a) (r : R a₁ a₂) :
reverse rev [r] = [rev r] := idp
theorem reverse_pair (rev : Π⦃a a'⦄, R a a' → R a' a) (r₂ : R a₂ a₃) (r₁ : R a₁ a₂) :
reverse rev [r₂, r₁] = [rev r₁, rev r₂] := idp
theorem reverse_concat (rev : Π⦃a a'⦄, R a a' → R a' a) (r : R a₁ a₂) (l : paths R a₂ a₃) :
reverse rev (concat r l) = rev r :: (reverse rev l) :=
begin
induction l,
{ reflexivity},
{ rewrite [concat_cons, reverse_cons, v_0]}
end
theorem reverse_append (rev : Π⦃a a'⦄, R a a' → R a' a) (l₂ : paths R a₂ a₃)
(l₁ : paths R a₁ a₂) : reverse rev (l₂ ++ l₁) = reverse rev l₁ ++ reverse rev l₂ :=
begin
induction l₂,
{ exact !append_nil⁻¹},
{ rewrite [cons_append, +reverse_cons, append_concat, v_0]}
end
definition realize (P : A → A → Type) (f : Π⦃a a'⦄, R a a' → P a a') (ρ : Πa, P a a)
(c : Π⦃a₁ a₂ a₃⦄, P a₁ a₂ → P a₂ a₃ → P a₁ a₃)
⦃a a' : A⦄ (l : paths R a a') : P a a' :=
begin
induction l,
{ exact ρ a},
{ exact c v_0 (f r)}
end
definition realize_nil (P : A → A → Type) (f : Π⦃a a'⦄, R a a' → P a a') (ρ : Πa, P a a)
(c : Π⦃a₁ a₂ a₃⦄, P a₁ a₂ → P a₂ a₃ → P a₁ a₃) (a : A) :
realize P f ρ c nil = ρ a :=
idp
definition realize_cons (P : A → A → Type) (f : Π⦃a a'⦄, R a a' → P a a') (ρ : Πa, P a a)
(c : Π⦃a₁ a₂ a₃⦄, P a₁ a₂ → P a₂ a₃ → P a₁ a₃)
⦃a₁ a₂ a₃ : A⦄ (r : R a₂ a₃) (l : paths R a₁ a₂) :
realize P f ρ c (r :: l) = c (realize P f ρ c l) (f r) :=
idp
theorem realize_singleton {P : A → A → Type} {f : Π⦃a a'⦄, R a a' → P a a'} {ρ : Πa, P a a}
{c : Π⦃a₁ a₂ a₃⦄, P a₁ a₂ → P a₂ a₃ → P a₁ a₃}
(id_left : Π⦃a₁ a₂⦄ (p : P a₁ a₂), c (ρ a₁) p = p)
⦃a₁ a₂ : A⦄ (r : R a₁ a₂) :
realize P f ρ c [r] = f r :=
id_left (f r)
theorem realize_pair {P : A → A → Type} {f : Π⦃a a'⦄, R a a' → P a a'} {ρ : Πa, P a a}
{c : Π⦃a₁ a₂ a₃⦄, P a₁ a₂ → P a₂ a₃ → P a₁ a₃}
(id_left : Π⦃a₁ a₂⦄ (p : P a₁ a₂), c (ρ a₁) p = p)
⦃a₁ a₂ a₃ : A⦄ (r₂ : R a₂ a₃) (r₁ : R a₁ a₂) :
realize P f ρ c [r₂, r₁] = c (f r₁) (f r₂) :=
ap (λx, c x (f r₂)) (realize_singleton id_left r₁)
theorem realize_append {P : A → A → Type} {f : Π⦃a a'⦄, R a a' → P a a'} {ρ : Πa, P a a}
{c : Π⦃a₁ a₂ a₃⦄, P a₁ a₂ → P a₂ a₃ → P a₁ a₃}
(assoc : Π⦃a₁ a₂ a₃ a₄⦄ (p : P a₁ a₂) (q : P a₂ a₃) (r : P a₃ a₄), c (c p q) r = c p (c q r))
(id_right : Π⦃a₁ a₂⦄ (p : P a₁ a₂), c p (ρ a₂) = p)
⦃a₁ a₂ a₃ : A⦄ (l₂ : paths R a₂ a₃) (l₁ : paths R a₁ a₂) :
realize P f ρ c (l₂ ++ l₁) = c (realize P f ρ c l₁) (realize P f ρ c l₂) :=
begin
induction l₂,
{ exact !id_right⁻¹},
{ rewrite [cons_append, +realize_cons, v_0, assoc]}
end
/-
We sometimes want to take quotients of paths (this library was developed to define the pushout of
categories). The definition paths_rel will - given some basic reduction rules codified by Q -
extend the reduction to a reflexive transitive relation respecting concatenation of paths.
-/
inductive paths_rel {A : Type} {R : A → A → Type}
(Q : Π⦃a a' : A⦄, paths R a a' → paths R a a' → Type)
: Π⦃a a' : A⦄, paths R a a' → paths R a a' → Type :=
| rrefl : Π{a a' : A} (l : paths R a a'), paths_rel Q l l
| rel : Π{a₁ a₂ a₃ : A} {l₂ l₃ : paths R a₂ a₃} (l : paths R a₁ a₂) (q : Q l₂ l₃),
paths_rel Q (l₂ ++ l) (l₃ ++ l)
| rcons : Π{a₁ a₂ a₃ : A} {l₁ l₂ : paths R a₁ a₂} (r : R a₂ a₃),
paths_rel Q l₁ l₂ → paths_rel Q (cons r l₁) (cons r l₂)
| rtrans : Π{a₁ a₂ : A} {l₁ l₂ l₃ : paths R a₁ a₂},
paths_rel Q l₁ l₂ → paths_rel Q l₂ l₃ → paths_rel Q l₁ l₃
open paths_rel
attribute rrefl [refl]
attribute rtrans [trans]
variables {Q : Π⦃a a' : A⦄, paths R a a' → paths R a a' → Type}
definition paths_rel_of_Q {l₁ l₂ : paths R a₁ a₂} (q : Q l₁ l₂) :
paths_rel Q l₁ l₂ :=
begin
rewrite [-append_nil l₁, -append_nil l₂], exact rel nil q,
end
theorem rel_respect_append_left (l : paths R a₂ a₃) {l₃ l₄ : paths R a₁ a₂}
(H : paths_rel Q l₃ l₄) : paths_rel Q (l ++ l₃) (l ++ l₄) :=
begin
induction l,
{ exact H},
{ exact rcons r (v_0 _ _ H)}
end
theorem rel_respect_append_right {l₁ l₂ : paths R a₂ a₃} (l : paths R a₁ a₂)
(H₁ : paths_rel Q l₁ l₂) : paths_rel Q (l₁ ++ l) (l₂ ++ l) :=
begin
induction H₁ with a₁ a₂ l₁
a₂ a₃ a₄ l₂ l₂' l₁ q
a₂ a₃ a₄ l₁ l₂ r H₁ IH
a₂ a₃ l₁ l₂ l₂' H₁ H₁' IH IH',
{ reflexivity},
{ rewrite [+ append_assoc], exact rel _ q},
{ exact rcons r (IH l) },
{ exact rtrans (IH l) (IH' l)}
end
theorem rel_respect_append {l₁ l₂ : paths R a₂ a₃} {l₃ l₄ : paths R a₁ a₂}
(H₁ : paths_rel Q l₁ l₂) (H₂ : paths_rel Q l₃ l₄) :
paths_rel Q (l₁ ++ l₃) (l₂ ++ l₄) :=
begin
induction H₁ with a₁ a₂ l
a₂ a₃ a₄ l₂ l₂' l q
a₂ a₃ a₄ l₁ l₂ r H₁ IH
a₂ a₃ l₁ l₂ l₂' H₁ H₁' IH IH',
{ exact rel_respect_append_left _ H₂},
{ rewrite [+ append_assoc], transitivity _, exact rel _ q,
apply rel_respect_append_left, apply rel_respect_append_left, exact H₂},
{ exact rcons r (IH _ _ H₂) },
{ refine rtrans (IH _ _ H₂) _, apply rel_respect_append_right, exact H₁'}
end
/- assuming some extra properties the relation respects reversing -/
theorem rel_respect_reverse (rev : Π⦃a a'⦄, R a a' → R a' a) {l₁ l₂ : paths R a₁ a₂}
(H : paths_rel Q l₁ l₂)
(rev_rel : Π⦃a a' : A⦄ {l l' : paths R a a'},
Q l l' → paths_rel Q (reverse rev l) (reverse rev l')) :
paths_rel Q (reverse rev l₁) (reverse rev l₂) :=
begin
induction H,
{ reflexivity},
{ rewrite [+ reverse_append], apply rel_respect_append_left, apply rev_rel q},
{ rewrite [+reverse_cons,-+append_singleton], apply rel_respect_append_right, exact v_0},
{ exact rtrans v_0 v_1}
end
theorem rel_left_inv (rev : Π⦃a a'⦄, R a a' → R a' a) (l : paths R a₁ a₂)
(li : Π⦃a a' : A⦄ (r : R a a'), paths_rel Q [rev r, r] nil) :
paths_rel Q (reverse rev l ++ l) nil :=
begin
induction l,
{ reflexivity},
{ rewrite [reverse_cons, concat_append],
refine rtrans _ v_0, apply rel_respect_append_left,
exact rel_respect_append_right _ (li r)}
end
theorem rel_right_inv (rev : Π⦃a a'⦄, R a a' → R a' a) (l : paths R a₁ a₂)
(ri : Π⦃a a' : A⦄ (r : R a a'), paths_rel Q [r, rev r] nil) :
paths_rel Q (l ++ reverse rev l) nil :=
begin
induction l using paths.rec_tail,
{ reflexivity},
{ rewrite [reverse_concat, concat_append],
refine rtrans _ a, apply rel_respect_append_left,
exact rel_respect_append_right _ (ri r)}
end
definition realize_eq {P : A → A → Type} {f : Π⦃a a'⦄, R a a' → P a a'} {ρ : Πa, P a a}
{c : Π⦃a₁ a₂ a₃⦄, P a₁ a₂ → P a₂ a₃ → P a₁ a₃}
(assoc : Π⦃a₁ a₂ a₃ a₄⦄ (p : P a₁ a₂) (q : P a₂ a₃) (r : P a₃ a₄), c (c p q) r = c p (c q r))
(id_right : Π⦃a₁ a₂⦄ (p : P a₁ a₂), c p (ρ a₂) = p)
(resp_rel : Π⦃a₁ a₂⦄ {l₁ l₂ : paths R a₁ a₂}, Q l₁ l₂ →
realize P f ρ c l₁ = realize P f ρ c l₂)
⦃a a' : A⦄ {l l' : paths R a a'} (H : paths_rel Q l l') :
realize P f ρ c l = realize P f ρ c l' :=
begin
induction H,
{ reflexivity},
{ rewrite [+realize_append assoc id_right], apply ap (c _), exact resp_rel q},
{ exact ap (λx, c x (f r)) v_0},
{ exact v_0 ⬝ v_1}
end
inductive all (T : Π⦃a₁ a₂ : A⦄, R a₁ a₂ → Type) : Π⦃a₁ a₂ : A⦄, paths R a₁ a₂ → Type :=
| nil {} : Π{a : A}, all T (@nil A R a)
| cons : Π{a₁ a₂ a₃ : A} {r : R a₂ a₃} {p : paths R a₁ a₂}, T r → all T p → all T (cons r p)
inductive Exists (T : Π⦃a₁ a₂ : A⦄, R a₁ a₂ → Type) : Π⦃a₁ a₂ : A⦄, paths R a₁ a₂ → Type :=
| base : Π{a₁ a₂ a₃ : A} {r : R a₂ a₃} (p : paths R a₁ a₂), T r → Exists T (cons r p)
| cons : Π{a₁ a₂ a₃ : A} (r : R a₂ a₃) {p : paths R a₁ a₂}, Exists T p → Exists T (cons r p)
inductive mem (l : R a₃ a₄) : Π⦃a₁ a₂ : A⦄, paths R a₁ a₂ → Type :=
| base : Π{a₂ : A} (p : paths R a₂ a₃), mem l (cons l p)
| cons : Π{a₁ a₂ a₃ : A} (r : R a₂ a₃) {p : paths R a₁ a₂}, mem l p → mem l (cons r p)
definition len (p : paths R a₁ a₂) : :=
begin
induction p with a a₁ a₂ a₃ r p IH,
{ exact 0 },
{ exact nat.succ IH }
end
end paths