lean2/hott/algebra/homotopy_group.hlean
2018-09-14 17:56:16 +02:00

307 lines
12 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
homotopy groups of a pointed space
-/
import .trunc_group types.trunc .group_theory types.nat.hott
open nat eq pointed trunc is_trunc algebra group function equiv unit is_equiv nat
/- todo: prove more properties of homotopy groups using gtrunc and agtrunc -/
namespace eq
definition homotopy_group [reducible] [constructor] (n : ) (A : Type*) : Set* :=
ptrunc 0 (Ω[n] A)
notation `π[`:95 n:0 `]`:0 := homotopy_group n
section
local attribute inf_group_loopn [instance]
definition group_homotopy_group [instance] [constructor] [reducible] (n : ) [is_succ n]
(A : Type*) : group (π[n] A) :=
group_trunc (Ω[n] A)
end
definition group_homotopy_group2 [instance] (k : ) (A : Type*) :
group (carrier (ptrunctype.to_pType (π[k + 1] A))) :=
group_homotopy_group (k+1) A
section
local attribute ab_inf_group_loopn [instance]
definition ab_group_homotopy_group [constructor] [reducible] (n : ) [is_at_least_two n]
(A : Type*) : ab_group (π[n] A) :=
ab_group_trunc (Ω[n] A)
end
local attribute ab_group_homotopy_group [instance]
definition ghomotopy_group [constructor] (n : ) [is_succ n] (A : Type*) : Group :=
gtrunc (Ωg[n] A)
definition aghomotopy_group [constructor] (n : ) [is_at_least_two n] (A : Type*) : AbGroup :=
agtrunc (Ωag[n] A)
notation `πg[`:95 n:0 `]`:0 := ghomotopy_group n
notation `πag[`:95 n:0 `]`:0 := aghomotopy_group n
definition fundamental_group [constructor] (A : Type*) : Group := πg[1] A
notation `π₁` := fundamental_group
definition tr_mul_tr {n : } {A : Type*} (p q : Ω[n + 1] A) :
tr p *[πg[n+1] A] tr q = tr (p ⬝ q) :=
by reflexivity
definition tr_mul_tr' {n : } {A : Type*} (p q : Ω[succ n] A)
: tr p *[π[succ n] A] tr q = tr (p ⬝ q) :=
idp
definition homotopy_group_pequiv [constructor] (n : ) {A B : Type*} (H : A ≃* B)
: π[n] A ≃* π[n] B :=
ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn n H)
definition homotopy_group_pequiv_loop_ptrunc [constructor] (k : ) (A : Type*) :
π[k] A ≃* Ω[k] (ptrunc k A) :=
begin
refine !loopn_ptrunc_pequiv⁻¹ᵉ* ⬝e* _,
exact loopn_pequiv_loopn k (pequiv_of_eq begin rewrite [trunc_index.zero_add] end)
end
open trunc_index
definition homotopy_group_ptrunc_of_le [constructor] {k n : } (H : k ≤ n) (A : Type*) :
π[k] (ptrunc n A) ≃* π[k] A :=
calc
π[k] (ptrunc n A) ≃* Ω[k] (ptrunc k (ptrunc n A))
: homotopy_group_pequiv_loop_ptrunc k (ptrunc n A)
... ≃* Ω[k] (ptrunc k A)
: loopn_pequiv_loopn k (ptrunc_ptrunc_pequiv_left A (of_nat_le_of_nat H))
... ≃* π[k] A : (homotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ*
definition homotopy_group_ptrunc [constructor] (k : ) (A : Type*) :
π[k] (ptrunc k A) ≃* π[k] A :=
homotopy_group_ptrunc_of_le (le.refl k) A
theorem trivial_homotopy_of_is_set (n : ) (A : Type*) [H : is_set A] : πg[n+1] A ≃g G0 :=
begin
apply trivial_group_of_is_contr,
apply is_trunc_trunc_of_is_trunc,
apply is_contr_loop_of_is_trunc (n+1),
exact is_trunc_succ_succ_of_is_set _ _ _
end
definition homotopy_group_succ_out (n : ) (A : Type*) : π[n + 1] A = π₁ (Ω[n] A) := idp
definition homotopy_group_succ_in (n : ) (A : Type*) : π[n + 1] A ≃* π[n] (Ω A) :=
ptrunc_pequiv_ptrunc 0 (loopn_succ_in n A)
definition ghomotopy_group_succ_out (n : ) (A : Type*) : πg[n + 1] A = π₁ (Ω[n] A) := idp
definition homotopy_group_succ_in_con {n : } {A : Type*} (g h : πg[n + 2] A) :
homotopy_group_succ_in (succ n) A (g * h) =
homotopy_group_succ_in (succ n) A g * homotopy_group_succ_in (succ n) A h :=
begin
induction g with p, induction h with q, esimp,
apply ap tr, apply loopn_succ_in_con
end
definition ghomotopy_group_succ_in [constructor] (n : ) (A : Type*) :
πg[n + 2] A ≃g πg[n + 1] (Ω A) :=
begin
fapply isomorphism_of_equiv,
{ exact homotopy_group_succ_in (succ n) A },
{ exact homotopy_group_succ_in_con },
end
definition is_contr_homotopy_group_of_is_contr (n : ) (A : Type*) [is_contr A] : is_contr (π[n] A) :=
begin
apply is_trunc_trunc_of_is_trunc,
apply is_contr_loop_of_is_trunc,
exact is_trunc_of_is_contr _ _ _
end
definition homotopy_group_functor [constructor] (n : ) {A B : Type*} (f : A →* B)
: π[n] A →* π[n] B :=
ptrunc_functor 0 (apn n f)
notation `π→[`:95 n:0 `]`:0 := homotopy_group_functor n
definition homotopy_group_functor_phomotopy [constructor] (n : ) {A B : Type*} {f g : A →* B}
(p : f ~* g) : π→[n] f ~* π→[n] g :=
ptrunc_functor_phomotopy 0 (apn_phomotopy n p)
definition homotopy_group_functor_pid (n : ) (A : Type*) : π→[n] (pid A) ~* pid (π[n] A) :=
ptrunc_functor_phomotopy 0 !apn_pid ⬝* !ptrunc_functor_pid
definition homotopy_group_functor_pcompose [constructor] (n : ) {A B C : Type*} (g : B →* C)
(f : A →* B) : π→[n] (g ∘* f) ~* π→[n] g ∘* π→[n] f :=
ptrunc_functor_phomotopy 0 !apn_pcompose ⬝* !ptrunc_functor_pcompose
definition is_equiv_homotopy_group_functor [constructor] (n : ) {A B : Type*} (f : A →* B)
(H : is_equiv f) : is_equiv (π→[n] f) :=
@(is_equiv_trunc_functor 0 _) (is_equiv_apn n f H)
definition homotopy_group_succ_in_natural (n : ) {A B : Type*} (f : A →* B) :
psquare (homotopy_group_succ_in n A) (homotopy_group_succ_in n B)
(π→[n + 1] f) (π→[n] (Ω→ f)) :=
begin
exact ptrunc_functor_psquare 0 (loopn_succ_in_natural n f),
end
definition homotopy_group_succ_in_natural_unpointed (n : ) {A B : Type*} (f : A →* B) :
hsquare (homotopy_group_succ_in n A) (homotopy_group_succ_in n B) (π→[n+1] f) (π→[n] (Ω→ f)) :=
homotopy_group_succ_in_natural n f
definition is_equiv_homotopy_group_functor_ap1 (n : ) {A B : Type*} (f : A →* B)
[is_equiv (π→[n + 1] f)] : is_equiv (π→[n] (Ω→ f)) :=
have is_equiv (π→[n] (Ω→ f) ∘ homotopy_group_succ_in n A),
from is_equiv_of_equiv_of_homotopy (equiv.mk (π→[n+1] f) _ ⬝e homotopy_group_succ_in n B)
(homotopy_group_succ_in_natural n f)⁻¹*,
is_equiv.cancel_right (homotopy_group_succ_in n A) _
definition tinverse [constructor] {X : Type*} : π[1] X →* π[1] X :=
ptrunc_functor 0 (pinverse X)
definition is_equiv_tinverse [constructor] (A : Type*) : is_equiv (@tinverse A) :=
by apply @is_equiv_trunc_functor; apply is_equiv_eq_inverse
definition ptrunc_functor_pinverse [constructor] {X : Type*}
: ptrunc_functor 0 (@pinverse X) ~* @tinverse X :=
begin
fapply phomotopy.mk,
{ reflexivity},
{ reflexivity}
end
/- maybe rename: ghomotopy_group_functor -/
definition homotopy_group_homomorphism [constructor] (n : ) [H : is_succ n] {A B : Type*}
(f : A →* B) : πg[n] A →g πg[n] B :=
gtrunc_functor (Ωg→[n] f)
definition homotopy_group_functor_mul [constructor] (n : ) {A B : Type*} (g : A →* B)
(p q : πg[n+1] A) :
(π→[n + 1] g) (p *[πg[n+1] A] q) = (π→[n+1] g) p *[πg[n+1] B] (π→[n + 1] g) q :=
begin
unfold [ghomotopy_group, homotopy_group] at *,
refine @trunc.rec _ _ _ (λq, !is_trunc_eq) _ p, clear p, intro p,
refine @trunc.rec _ _ _ (λq, !is_trunc_eq) _ q, clear q, intro q,
apply ap tr, apply apn_con
end
/- todo: rename πg→ -/
notation `π→g[`:95 n:0 `]`:0 := homotopy_group_homomorphism n
definition homotopy_group_homomorphism_pcompose (n : ) [H : is_succ n] {A B C : Type*} (g : B →* C)
(f : A →* B) : π→g[n] (g ∘* f) ~ π→g[n] g ∘ π→g[n] f :=
begin
induction H with n, exact to_homotopy (homotopy_group_functor_pcompose (succ n) g f)
end
/- todo: use is_succ -/
definition homotopy_group_isomorphism_of_pequiv [constructor] (n : ) {A B : Type*} (f : A ≃* B)
: πg[n+1] A ≃g πg[n+1] B :=
gtrunc_isomorphism_gtrunc (gloopn_isomorphism_gloopn (n+1) f)
definition homotopy_group_add (A : Type*) (n m : ) :
πg[n+m+1] A ≃g πg[n+1] (Ω[m] A) :=
begin
revert A, induction m with m IH: intro A,
{ reflexivity},
{ esimp [loopn, nat.add], refine !ghomotopy_group_succ_in ⬝g _, refine !IH ⬝g _,
apply homotopy_group_isomorphism_of_pequiv,
exact !loopn_succ_in⁻¹ᵉ*}
end
theorem trivial_homotopy_add_of_is_set_loopn {n : } (m : ) {A : Type*}
(H : is_set (Ω[n] A)) : πg[m+n+1] A ≃g G0 :=
!homotopy_group_add ⬝g !trivial_homotopy_of_is_set
theorem trivial_homotopy_le_of_is_set_loopn {n : } (m : ) (H1 : n ≤ m) {A : Type*}
(H2 : is_set (Ω[n] A)) : πg[m+1] A ≃g G0 :=
obtain (k : ) (p : n + k = m), from le.elim H1,
isomorphism_of_eq (ap (λx, πg[x+1] A) (p⁻¹ ⬝ add.comm n k)) ⬝g
trivial_homotopy_add_of_is_set_loopn k H2
definition homotopy_group_pequiv_loop_ptrunc_con {k : } {A : Type*} (p q : πg[k +1] A) :
homotopy_group_pequiv_loop_ptrunc (succ k) A (p * q) =
homotopy_group_pequiv_loop_ptrunc (succ k) A p ⬝
homotopy_group_pequiv_loop_ptrunc (succ k) A q :=
begin
refine _ ⬝ !loopn_pequiv_loopn_con,
exact ap (loopn_pequiv_loopn _ _) !loopn_ptrunc_pequiv_inv_con
end
definition homotopy_group_pequiv_loop_ptrunc_inv_con {k : } {A : Type*}
(p q : Ω[succ k] (ptrunc (succ k) A)) :
(homotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* (p ⬝ q) =
(homotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* p *
(homotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* q :=
inv_preserve_binary (homotopy_group_pequiv_loop_ptrunc (succ k) A) mul concat
(@homotopy_group_pequiv_loop_ptrunc_con k A) p q
definition ghomotopy_group_ptrunc_of_le [constructor] {k n : } (H : k ≤ n) [Hk : is_succ k] (A : Type*) :
πg[k] (ptrunc n A) ≃g πg[k] A :=
begin
fapply isomorphism_of_equiv,
{ exact homotopy_group_ptrunc_of_le H A},
{ intro g₁ g₂, induction Hk with k,
refine _ ⬝ !homotopy_group_pequiv_loop_ptrunc_inv_con,
apply ap ((homotopy_group_pequiv_loop_ptrunc (k+1) A)⁻¹ᵉ*),
refine _ ⬝ !loopn_pequiv_loopn_con ,
apply ap (loopn_pequiv_loopn (k+1) _),
apply homotopy_group_pequiv_loop_ptrunc_con}
end
lemma ghomotopy_group_isomorphism_of_ptrunc_pequiv {A B : Type*}
(n k : ) (H : n+1 ≤[] k) (f : ptrunc k A ≃* ptrunc k B) : πg[n+1] A ≃g πg[n+1] B :=
(ghomotopy_group_ptrunc_of_le H A)⁻¹ᵍ ⬝g
homotopy_group_isomorphism_of_pequiv n f ⬝g
ghomotopy_group_ptrunc_of_le H B
definition fundamental_group_isomorphism {X : Type*} {G : Group}
(e : Ω X ≃ G) (hom_e : Πp q, e (p ⬝ q) = e p * e q) : π₁ X ≃g G :=
isomorphism_of_equiv (trunc_equiv_trunc 0 e ⬝e (trunc_equiv 0 G))
begin intro p q, induction p with p, induction q with q, exact hom_e p q end
definition ghomotopy_group_ptrunc [constructor] (k : ) [is_succ k] (A : Type*) :
πg[k] (ptrunc k A) ≃g πg[k] A :=
ghomotopy_group_ptrunc_of_le (le.refl k) A
section psquare
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*}
{f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂}
{f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂}
definition homotopy_group_functor_psquare (n : ) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
psquare (π→[n] f₁₀) (π→[n] f₁₂) (π→[n] f₀₁) (π→[n] f₂₁) :=
!homotopy_group_functor_pcompose⁻¹* ⬝* homotopy_group_functor_phomotopy n p ⬝*
!homotopy_group_functor_pcompose
definition homotopy_group_homomorphism_psquare (n : ) [H : is_succ n]
(p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare (π→g[n] f₁₀) (π→g[n] f₁₂) (π→g[n] f₀₁) (π→g[n] f₂₁) :=
begin
induction H with n, exact to_homotopy (ptrunc_functor_psquare 0 (apn_psquare (succ n) p))
end
end psquare
/- some homomorphisms -/
-- definition is_homomorphism_cast_loopn_succ_eq_in (n : ) {A : Type*} :
-- is_homomorphism (loopn_succ_in A (succ n) : πg[n+1+1] A → πg[n+1] (Ω A)) :=
-- begin
-- intro g h, induction g with g, induction h with h,
-- xrewrite [tr_mul_tr, - + fn_cast_eq_cast_fn _ (λn, tr), tr_mul_tr, ↑cast, -tr_compose,
-- loopn_succ_eq_in_concat, - + tr_compose],
-- end
definition is_mul_hom_inverse (n : ) (A : Type*)
: is_mul_hom (λp, p⁻¹ : (πag[n+2] A) → (πag[n+2] A)) :=
begin
intro g h, exact ap inv (mul.comm g h) ⬝ mul_inv h g,
end
end eq