5feef27c2b
Before this commit, Lean would forbid new tokens containing '(' or ')'. We relax this restriction. Now, we just forbid new tokens starting with '(' or ending with ')'.
161 lines
5.7 KiB
Text
161 lines
5.7 KiB
Text
/-
|
||
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Jeremy Avigad
|
||
|
||
Notation for intervals and some properties.
|
||
|
||
The mnemonic: o = open, c = closed, u = unbounded. For example, Iou a b is '(a, ∞).
|
||
-/
|
||
import .order data.set
|
||
open set
|
||
|
||
-- TODO: move
|
||
section
|
||
open set
|
||
|
||
theorem mem_singleton_of_eq {A : Type} {x a : A} (H : x = a) : x ∈ '{a} :=
|
||
eq.subst (eq.symm H) (mem_singleton a)
|
||
end
|
||
|
||
namespace intervals
|
||
|
||
section order_pair
|
||
variables {A : Type} [order_pair A]
|
||
|
||
definition Ioo (a b : A) : set A := {x | a < x ∧ x < b}
|
||
definition Ioc (a b : A) : set A := {x | a < x ∧ x ≤ b}
|
||
definition Ico (a b : A) : set A := {x | a ≤ x ∧ x < b}
|
||
definition Icc (a b : A) : set A := {x | a ≤ x ∧ x ≤ b}
|
||
definition Iou (a : A) : set A := {x | a < x}
|
||
definition Icu (a : A) : set A := {x | a ≤ x}
|
||
definition Iuo (b : A) : set A := {x | x < b}
|
||
definition Iuc (b : A) : set A := {x | x ≤ b}
|
||
|
||
notation `'(` a `, ` b `)` := Ioo a b
|
||
notation `'(` a `, ` b `]` := Ioc a b
|
||
notation `'[` a `, ` b `)` := Ico a b
|
||
notation `'[` a `, ` b `]` := Icc a b
|
||
notation `'(` a `, ` `∞` `)` := Iou a
|
||
notation `'[` a `, ` `∞` `)` := Icu a
|
||
notation `'(` `-∞` `, ` b `)` := Iuo b
|
||
notation `'(` `-∞` `, ` b `]` := Iuc b
|
||
|
||
variables a b : A
|
||
|
||
proposition Iou_inter_Iuo : '(a, ∞) ∩ '(-∞, b) = '(a, b) := rfl
|
||
proposition Icu_inter_Iuo : '[a, ∞) ∩ '(-∞, b) = '[a, b) := rfl
|
||
proposition Iou_inter_Iuc : '(a, ∞) ∩ '(-∞, b] = '(a, b] := rfl
|
||
proposition Ioc_inter_Iuc : '[a, ∞) ∩ '(-∞, b] = '[a, b] := rfl
|
||
|
||
proposition Icc_self : '[a, a] = '{a} :=
|
||
set.ext (take x, iff.intro
|
||
(suppose x ∈ '[a, a],
|
||
have x = a, from le.antisymm (and.right this) (and.left this),
|
||
show x ∈ '{a}, from mem_singleton_of_eq this)
|
||
(suppose x ∈ '{a},
|
||
have x = a, from eq_of_mem_singleton this,
|
||
show a ≤ x ∧ x ≤ a, from and.intro (eq.subst this !le.refl) (eq.subst this !le.refl)))
|
||
|
||
end order_pair
|
||
|
||
section decidable_linear_order
|
||
|
||
variables {A : Type} [decidable_linear_order A]
|
||
|
||
proposition Icc_eq_Icc_union_Ioc {a b c : A} (H1 : a ≤ b) (H2 : b ≤ c) :
|
||
'[a, c] = '[a, b] ∪ '(b, c] :=
|
||
set.ext (take x, iff.intro
|
||
(assume H3 : x ∈ '[a, c],
|
||
decidable.by_cases
|
||
(suppose x ≤ b,
|
||
or.inl (and.intro (and.left H3) this))
|
||
(suppose ¬ x ≤ b,
|
||
or.inr (and.intro (lt_of_not_ge this) (and.right H3))))
|
||
(suppose x ∈ '[a, b] ∪ '(b, c],
|
||
or.elim this
|
||
(suppose x ∈ '[a, b],
|
||
and.intro (and.left this) (le.trans (and.right this) H2))
|
||
(suppose x ∈ '(b, c],
|
||
and.intro (le_of_lt (lt_of_le_of_lt H1 (and.left this))) (and.right this))))
|
||
|
||
end decidable_linear_order
|
||
|
||
/- intervals of natural numbers -/
|
||
|
||
namespace nat
|
||
open nat eq.ops
|
||
variables m n : ℕ
|
||
|
||
proposition Ioc_eq_Icc_succ : '(m, n] = '[succ m, n] := rfl
|
||
|
||
proposition Ioo_eq_Ico_succ : '(m, n) = '[succ m, n) := rfl
|
||
|
||
proposition Ico_succ_eq_Icc : '[m, succ n) = '[m, n] :=
|
||
set.ext (take x, iff.intro
|
||
(assume H, and.intro (and.left H) (le_of_lt_succ (and.right H)))
|
||
(assume H, and.intro (and.left H) (lt_succ_of_le (and.right H))))
|
||
|
||
proposition Ioo_succ_eq_Ioc : '(m, succ n) = '(m, n] :=
|
||
set.ext (take x, iff.intro
|
||
(assume H, and.intro (and.left H) (le_of_lt_succ (and.right H)))
|
||
(assume H, and.intro (and.left H) (lt_succ_of_le (and.right H))))
|
||
|
||
proposition Icu_zero : '[(0 : nat), ∞) = univ :=
|
||
eq_univ_of_forall (take x, zero_le x)
|
||
|
||
proposition Icc_zero (n : ℕ) : '[0, n] = '(-∞, n] :=
|
||
have '[0, n] = '[0, ∞) ∩ '(-∞, n], from rfl,
|
||
by+ rewrite [this, Icu_zero, univ_inter]
|
||
|
||
proposition bij_on_add_Icc_zero (m n : ℕ) : bij_on (add m) ('[0, n]) ('[m, m+n]) :=
|
||
have mapsto : ∀₀ i ∈ '[0, n], m + i ∈ '[m, m+n], from
|
||
(take i, assume imem,
|
||
have H1 : m ≤ m + i, from !le_add_right,
|
||
have H2 : m + i ≤ m + n, from add_le_add_left (and.right imem) m,
|
||
show m + i ∈ '[m, m+n], from and.intro H1 H2),
|
||
have injon : inj_on (add m) ('[0, n]), from
|
||
(take i j, assume Hi Hj H, !eq_of_add_eq_add_left H),
|
||
have surjon : surj_on (add m) ('[0, n]) ('[m, m+n]), from
|
||
(take j, assume Hj : j ∈ '[m, m+n],
|
||
obtain lej jle, from Hj,
|
||
let i := j - m in
|
||
have ile : i ≤ n, from calc
|
||
j - m ≤ m + n - m : nat.sub_le_sub_right jle m
|
||
... = n : nat.add_sub_cancel_left,
|
||
have iadd : m + i = j, by rewrite add.comm; apply nat.sub_add_cancel lej,
|
||
exists.intro i (and.intro (and.intro !zero_le ile) iadd)),
|
||
bij_on.mk mapsto injon surjon
|
||
end nat
|
||
|
||
section nat -- put the instances in the intervals namespace
|
||
open nat eq.ops
|
||
variables m n : ℕ
|
||
|
||
proposition nat.Iuc_finite [instance] (n : ℕ) : finite '(-∞, n] :=
|
||
nat.induction_on n
|
||
(have '(-∞, 0] ⊆ '{0}, from λ x H, mem_singleton_of_eq (le.antisymm H !zero_le),
|
||
finite_subset this)
|
||
(take n, assume ih : finite '(-∞, n],
|
||
have '(-∞, succ n] ⊆ '(-∞, n] ∪ '{succ n},
|
||
by intro x H; rewrite [mem_union_iff, mem_singleton_iff]; apply le_or_eq_succ_of_le_succ H,
|
||
finite_subset this)
|
||
|
||
proposition nat.Iuo_finite [instance] (n : ℕ) : finite '(-∞, n) :=
|
||
have '(-∞, n) ⊆ '(-∞, n], from λ x, le_of_lt,
|
||
finite_subset this
|
||
|
||
proposition nat.Icc_finite [instance] (m n : ℕ) : finite ('[m, n]) :=
|
||
have '[m, n] ⊆ '(-∞, n], from λ x H, and.right H,
|
||
finite_subset this
|
||
|
||
proposition nat.Ico_finite [instance] (m n : ℕ) : finite ('[m, n)) :=
|
||
have '[m, n) ⊆ '(-∞, n), from λ x H, and.right H,
|
||
finite_subset this
|
||
|
||
proposition nat.Ioc_finite [instance] (m n : ℕ) : finite '(m, n] :=
|
||
have '(m, n] ⊆ '(-∞, n], from λ x H, and.right H,
|
||
finite_subset this
|
||
end nat
|
||
|
||
end intervals
|