lean2/hott/homotopy/hopf.hlean
Floris van Doorn 9a17a244c9 move more results and make arguments explicit
More results from the Spectral repository are moved to this library
Also make various type-class arguments of truncatedness and equivalences which were hard to synthesize explicit
2018-09-11 17:06:08 +02:00

224 lines
7.9 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Ulrik Buchholtz and Egbert Rijke. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ulrik Buchholtz, Egbert Rijke
H-spaces and the Hopf construction
-/
import types.equiv .wedge .join
open eq eq.ops equiv is_equiv is_conn is_trunc trunc susp join pointed
namespace hopf
structure h_space [class] (A : Type) extends has_mul A, has_one A :=
(one_mul : ∀a, mul one a = a) (mul_one : ∀a, mul a one = a)
section
variable {A : Type}
variable [H : h_space A]
include H
definition one_mul (a : A) : 1 * a = a := !h_space.one_mul
definition mul_one (a : A) : a * 1 = a := !h_space.mul_one
definition h_space_equiv_closed {B : Type} (f : A ≃ B) : h_space B :=
⦃ h_space, one := f 1, mul := (λb b', f (f⁻¹ b * f⁻¹ b')),
one_mul := by intro b; rewrite [to_left_inv,one_mul,to_right_inv],
mul_one := by intro b; rewrite [to_left_inv,mul_one,to_right_inv] ⦄
/- Lemma 8.5.5.
If A is 0-connected, then left and right multiplication are equivalences -/
variable [K : is_conn 0 A]
include K
definition is_equiv_mul_left [instance] : Π(a : A), is_equiv (λx, a * x) :=
begin
apply is_conn_fun.elim -1 (is_conn_fun_from_unit -1 A 1)
(λa, trunctype.mk' -1 (is_equiv (λx, a * x))),
intro z, change is_equiv (λx : A, 1 * x), refine is_equiv.homotopy_closed id _ _,
intro x, apply inverse, apply one_mul
end
definition is_equiv_mul_right [instance] : Π(a : A), is_equiv (λx, x * a) :=
begin
apply is_conn_fun.elim -1 (is_conn_fun_from_unit -1 A 1)
(λa, trunctype.mk' -1 (is_equiv (λx, x * a))),
intro z, change is_equiv (λx : A, x * 1), refine is_equiv.homotopy_closed id _ _,
intro x, apply inverse, apply mul_one
end
end
section
variable (A : Type)
variables [H : h_space A] [K : is_conn 0 A]
include H K
definition hopf [unfold 4] : susp A → Type :=
susp.elim_type A A (λa, equiv.mk (λx, a * x) !is_equiv_mul_left)
/- Lemma 8.5.7. The total space is A * A -/
open prod prod.ops
protected definition total : sigma (hopf A) ≃ join A A :=
begin
apply equiv.trans (susp.flattening A A A _), unfold join,
apply equiv.trans (pushout.symm pr₂ (λz : A × A, z.1 * z.2)),
fapply pushout.equiv,
{ fapply equiv.MK
(λz : A × A, (z.1 * z.2, z.2))
(λz : A × A, ((λx, x * z.2)⁻¹ z.1, z.2)),
{ intro z, induction z with u v, esimp,
exact prod_eq (right_inv (λx, x * v) u) idp },
{ intro z, induction z with a b, esimp,
exact prod_eq (left_inv (λx, x * b) a) idp } },
{ reflexivity },
{ reflexivity },
{ reflexivity },
{ reflexivity }
end
end
/- If A is a K(G,1), then A is deloopable.
Main lemma of Licata-Finster. -/
section
parameters (A : Type) [T : is_trunc 1 A] [K : is_conn 0 A] [H : h_space A]
(coh : one_mul 1 = mul_one 1 :> (1 * 1 = 1 :> A))
definition P [reducible] : susp A → Type :=
λx, trunc 1 (north = x)
include K H T
local abbreviation codes [reducible] : susp A → Type := hopf A
definition transport_codes_merid (a a' : A)
: transport codes (merid a) a' = a * a' :> A :=
ap10 (elim_type_merid _ _ _ a) a'
definition is_trunc_codes [instance] (x : susp A) : is_trunc 1 (codes x) :=
begin
induction x with a, do 2 apply T, apply is_prop.elimo
end
definition encode₀ {x : susp A} : north = x → codes x :=
λp, transport codes p (by change A; exact 1)
definition encode {x : susp A} : P x → codes x :=
λp, trunc.elim encode₀ p
definition decode' : A → P (@north A) :=
λa, tr (merid a ⬝ (merid 1)⁻¹)
definition transport_codes_merid_one_inv (a : A)
: transport codes (merid 1)⁻¹ a = a :=
ap10 (elim_type_merid_inv _ _ _ 1) a ⬝ begin apply to_inv_eq_of_eq, esimp, refine !one_mul⁻¹ end
proposition encode_decode' (a : A) : encode (decode' a) = a :=
begin
esimp [encode, decode', encode₀],
refine !con_tr ⬝ _,
refine (ap (transport _ _) !transport_codes_merid ⬝ !transport_codes_merid_one_inv) ⬝ _,
apply mul_one
end
include coh
open pointed
proposition homomorphism : Πa a' : A,
tr (merid (a * a')) = tr (merid a' ⬝ (merid 1)⁻¹ ⬝ merid a)
:> trunc 1 (@north A = @south A) :=
begin
fapply @wedge_extension.ext (pointed.MK A 1) (pointed.MK A 1) 0 0 K K
(λa a' : A, tr (merid (a * a')) = tr (merid a' ⬝ (merid 1)⁻¹ ⬝ merid a)),
{ intros a a', apply is_trunc_eq, apply is_trunc_trunc },
{ change Πa : A,
tr (merid (a * 1)) = tr (merid 1 ⬝ (merid 1)⁻¹ ⬝ merid a)
:> trunc 1 (@north A = @south A),
intro a, apply ap tr,
exact calc
merid (a * 1) = merid a : ap merid (mul_one a)
... = merid 1 ⬝ (merid 1)⁻¹ ⬝ merid a
: (idp_con (merid a))⁻¹
⬝ ap (λw, w ⬝ merid a) (con.right_inv (merid 1))⁻¹ },
{ change Πa' : A,
tr (merid (1 * a')) = tr (merid a' ⬝ (merid 1)⁻¹ ⬝ merid 1)
:> trunc 1 (@north A = @south A),
intro a', apply ap tr,
exact calc
merid (1 * a') = merid a' : ap merid (one_mul a')
... = merid a' ⬝ (merid 1)⁻¹ ⬝ merid 1
: ap (λw, merid a' ⬝ w) (con.left_inv (merid 1))⁻¹
⬝ (con.assoc' (merid a') (merid 1)⁻¹ (merid 1)) },
{ apply ap02 tr, esimp, fapply concat2,
{ apply ap02 merid, exact coh⁻¹ },
{ assert e : Π(X : Type)(x y : X)(p : x = y),
(idp_con p)⁻¹ ⬝ ap (λw : x = x, w ⬝ p) (con.right_inv p)⁻¹
= ap (concat p) (con.left_inv p)⁻¹ ⬝ con.assoc' p p⁻¹ p,
{ intros X x y p, cases p, reflexivity },
apply e } }
end
definition decode {x : susp A} : codes x → P x :=
begin
induction x,
{ exact decode' },
{ exact (λa, tr (merid a)) },
{ apply pi.arrow_pathover_left, esimp, intro a',
apply pathover_of_tr_eq, krewrite susp.elim_type_merid, esimp,
krewrite [trunc_transport,eq_transport_r], apply inverse,
apply homomorphism }
end
definition decode_encode {x : susp A} : Πt : P x, decode (encode t) = t :=
begin
apply trunc.rec, intro p, cases p, apply ap tr, apply con.right_inv
end
/-
We define main_lemma by first defining its inverse, because normally equiv.MK changes
the left_inv-component of an equivalence to adjointify it, but in this case we want the
left_inv-component to be encode_decode'. So we adjointify its inverse, so that only the
right_inv-component is changed.
-/
definition main_lemma : trunc 1 (north = north :> susp A) ≃ A :=
(equiv.MK decode' encode decode_encode encode_decode')⁻¹ᵉ
definition main_lemma_point
: ptrunc 1 (Ω(susp A)) ≃* pointed.MK A 1 :=
pointed.pequiv_of_equiv main_lemma idp
protected definition delooping : Ω (ptrunc 2 (susp A)) ≃* pointed.MK A 1 :=
loop_ptrunc_pequiv 1 (susp A) ⬝e* main_lemma_point
/- characterization of the underlying pointed maps -/
definition to_pmap_main_lemma_point_pinv
: main_lemma_point⁻¹ᵉ* ~* !ptr ∘* loop_susp_unit (pointed.MK A 1) :=
begin
fapply phomotopy.mk,
{ intro a, reflexivity },
{ reflexivity }
end
definition to_pmap_delooping_pinv :
delooping⁻¹ᵉ* ~* Ω→ !ptr ∘* loop_susp_unit (pointed.MK A 1) :=
begin
refine !trans_pinv ⬝* _,
refine pwhisker_left _ !to_pmap_main_lemma_point_pinv ⬝* _,
refine !passoc⁻¹* ⬝* _,
refine pwhisker_right _ !ap1_ptr⁻¹*,
end
definition hopf_delooping_elim {B : Type*} (f : pointed.MK A 1 →* Ω B) [H2 : is_trunc 2 B] :
Ω→(ptrunc.elim 2 (susp_elim f)) ∘* (hopf.delooping A coh)⁻¹ᵉ* ~* f :=
begin
refine pwhisker_left _ !to_pmap_delooping_pinv ⬝* _,
refine !passoc⁻¹* ⬝* _,
refine pwhisker_right _ (!ap1_pcompose⁻¹* ⬝* ap1_phomotopy !ptrunc_elim_ptr) ⬝* _,
apply ap1_susp_elim
end
end
end hopf