lean2/library/data/set.lean
2014-10-01 17:51:17 -07:00

97 lines
3.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

----------------------------------------------------------------------------------------------------
--- Copyright (c) 2014 Jeremy Avigad. All rights reserved.
--- Released under Apache 2.0 license as described in the file LICENSE.
--- Author: Jeremy Avigad, Leonardo de Moura
----------------------------------------------------------------------------------------------------
import data.bool
open eq.ops bool
namespace set
definition set (T : Type) :=
T → bool
definition mem {T : Type} (x : T) (s : set T) :=
(s x) = tt
infix `∈` := mem
definition eqv {T : Type} (A B : set T) : Prop :=
∀x, x ∈ A ↔ x ∈ B
infixl ``:50 := eqv
theorem eqv_refl {T : Type} (A : set T) : A A :=
take x, iff.rfl
theorem eqv_symm {T : Type} {A B : set T} (H : A B) : B A :=
take x, iff.symm (H x)
theorem eqv_trans {T : Type} {A B C : set T} (H1 : A B) (H2 : B C) : A C :=
take x, iff.trans (H1 x) (H2 x)
definition empty {T : Type} : set T :=
λx, ff
notation `∅` := empty
theorem mem_empty {T : Type} (x : T) : ¬ (x ∈ ∅) :=
assume H : x ∈ ∅, absurd H ff_ne_tt
definition univ {T : Type} : set T :=
λx, tt
theorem mem_univ {T : Type} (x : T) : x ∈ univ :=
rfl
definition inter {T : Type} (A B : set T) : set T :=
λx, A x && B x
infixl `∩` := inter
theorem mem_inter {T : Type} (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B) :=
iff.intro
(assume H, and.intro (and_eq_tt_elim_left H) (and_eq_tt_elim_right H))
(assume H,
have e1 : A x = tt, from and.elim_left H,
have e2 : B x = tt, from and.elim_right H,
show A x && B x = tt, from e1⁻¹ ▸ e2⁻¹ ▸ and_tt_left tt)
theorem inter_id {T : Type} (A : set T) : A ∩ A A :=
take x, and_id (A x) ▸ iff.rfl
theorem inter_empty_right {T : Type} (A : set T) : A ∩ ∅ ∅ :=
take x, and_ff_right (A x) ▸ iff.rfl
theorem inter_empty_left {T : Type} (A : set T) : ∅ ∩ A ∅ :=
take x, and_ff_left (A x) ▸ iff.rfl
theorem inter_comm {T : Type} (A B : set T) : A ∩ B B ∩ A :=
take x, and_comm (A x) (B x) ▸ iff.rfl
theorem inter_assoc {T : Type} (A B C : set T) : (A ∩ B) ∩ C A ∩ (B ∩ C) :=
take x, and_assoc (A x) (B x) (C x) ▸ iff.rfl
definition union {T : Type} (A B : set T) : set T :=
λx, A x || B x
infixl `` := union
theorem mem_union {T : Type} (x : T) (A B : set T) : x ∈ A B ↔ (x ∈ A x ∈ B) :=
iff.intro
(assume H, or_to_or H)
(assume H, or.elim H
(assume Ha : A x = tt,
show A x || B x = tt, from Ha⁻¹ ▸ or_tt_left (B x))
(assume Hb : B x = tt,
show A x || B x = tt, from Hb⁻¹ ▸ or_tt_right (A x)))
theorem union_id {T : Type} (A : set T) : A A A :=
take x, or_id (A x) ▸ iff.rfl
theorem union_empty_right {T : Type} (A : set T) : A A :=
take x, or_ff_right (A x) ▸ iff.rfl
theorem union_empty_left {T : Type} (A : set T) : ∅ A A :=
take x, or_ff_left (A x) ▸ iff.rfl
theorem union_comm {T : Type} (A B : set T) : A B B A :=
take x, or_comm (A x) (B x) ▸ iff.rfl
theorem union_assoc {T : Type} (A B C : set T) : (A B) C A (B C) :=
take x, or_assoc (A x) (B x) (C x) ▸ iff.rfl
end set