9b8f60b739
This is useful when debugging proofs.
13 lines
351 B
Text
13 lines
351 B
Text
import hott.path tools.tactic
|
|
|
|
open path tactic
|
|
open path (induction_on)
|
|
|
|
definition concat_whisker2 {A} {x y z : A} (p p' : x ≈ y) (q q' : y ≈ z) (a : p ≈ p') (b : q ≈ q') :
|
|
(whiskerR a q) @ (whiskerL p' b) ≈ (whiskerL p b) @ (whiskerR a q') :=
|
|
begin
|
|
apply (induction_on b),
|
|
apply (induction_on a),
|
|
apply ((concat_1p _)^),
|
|
end
|
|
exit
|