ba9a8f9d98
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
25 lines
946 B
Text
25 lines
946 B
Text
import macros
|
|
|
|
definition Set (A : Type) : Type := A → Bool
|
|
|
|
definition element {A : Type} (x : A) (s : Set A) := s x
|
|
infix 60 ∈ : element
|
|
|
|
definition subset {A : Type} (s1 : Set A) (s2 : Set A) := ∀ x, x ∈ s1 → x ∈ s2
|
|
infix 50 ⊆ : subset
|
|
|
|
theorem subset_trans {A : Type} {s1 s2 s3 : Set A} (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s3) : s1 ⊆ s3
|
|
:= take x : A,
|
|
assume Hin : x ∈ s1,
|
|
show x ∈ s3, from
|
|
let L1 : x ∈ s2 := H1 x Hin
|
|
in H2 x L1
|
|
|
|
theorem subset_ext {A : Type} {s1 s2 : Set A} (H : ∀ x, x ∈ s1 = x ∈ s2) : s1 = s2
|
|
:= funext H
|
|
|
|
theorem subset_antisym {A : Type} {s1 s2 : Set A} (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s1) : s1 = s2
|
|
:= subset_ext (show (∀ x, x ∈ s1 = x ∈ s2), from
|
|
take x, show x ∈ s1 = x ∈ s2, from
|
|
boolext (show x ∈ s1 → x ∈ s2, from H1 x)
|
|
(show x ∈ s2 → x ∈ s1, from H2 x))
|