lean2/tests/lean/elab1.lean.expected.out
Leonardo de Moura df116f88e0 Improve pretty printer for Pi's
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2013-09-08 11:04:07 -07:00

81 lines
2 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Set: pp::colors
Set: pp::unicode
Assumed: f
Error (line: 4, pos: 6) type mismatch at application
f 10
Function type:
Π (A : Type), A → A → A
Arguments types:
: Type
10 :
: Bool
Assumed: g
Error (line: 7, pos: 6) unsolved placeholder at term
g 10
Assumed: h
Error (line: 11, pos: 27) application type mismatch during term elaboration
h A x
Function type:
Π (A : Type), A → A
Arguments types:
A : Type
x : lift:0:2 ?M0
Elaborator state
#0 ≈ lift:0:2 ?M0
Assumed: eq
Error (line: 15, pos: 51) application type mismatch during term elaboration
eq C a b
Function type:
Π (A : Type), A → A → Bool
Arguments types:
C : Type
a : lift:0:3 ?M0
b : lift:0:2 ?M2
Elaborator state
#0 ≈ lift:0:2 ?M2
#0 ≈ lift:0:3 ?M0
Assumed: a
Assumed: b
Assumed: H
Error (line: 20, pos: 18) type mismatch during term elaboration
Discharge (λ H1 : _, Conj H1 (Conjunct1 H))
Term after elaboration:
Discharge (λ H1 : ?M4, Conj H1 (Conjunct1 H))
Expected type:
b
Got:
?M4 ⇒ ?M2
Elaborator state
lift:0:1 ?M2 ≈ lift:0:1 ?M4 ∧ a
b ≈ if Bool ?M4 ?M2
b ≈ if Bool ?M4 ?M2
Error (line: 22, pos: 22) type mismatch at application
Trans (Refl a) (Refl b)
Function type:
Π (A : Type U) (a b c : A), (a = b) → (b = c) → (a = c)
Arguments types:
Bool : Type
a : Bool
a : Bool
b : Bool
Refl a : a = a
Refl b : b = b
Error (line: 24, pos: 6) type mismatch at application
f Bool Bool
Function type:
Π (A : Type), A → A → A
Arguments types:
Type : Type 1
Bool : Type
Bool : Type
Error (line: 27, pos: 21) type mismatch at application
DisjCases (EM a) (λ H_a : a, H) (λ H_na : ¬ a, NotImp1 (MT H H_na))
Function type:
Π (a b c : Bool), (a b) → (a → c) → (b → c) → c
Arguments types:
a : Bool
¬ a : Bool
a : Bool
EM a : a ¬ a
(λ H_a : a, H) : a → ((a ⇒ b) ⇒ a)
(λ H_na : ¬ a, NotImp1 (MT H H_na)) : (¬ a) → a