lean2/tests/lean/run/class4.lean
Leonardo de Moura faee08591f fix(*): make sure elaborator and type_checker use the same "rules" for treating opaque definitions
This is a big change because we have to store in constraints whether we can use the "relaxed" rules or not.
The "relaxed" case says that when type checking the value of an opaque definition we can treat other opaque definitions in the same module as transparent.

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2014-07-27 12:12:54 -07:00

87 lines
2.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import standard
inductive nat : Type :=
| zero : nat
| succ : nat → nat
definition add (x y : nat)
:= nat_rec x (λ n r, succ r) y
infixl `+`:65 := add
theorem add_zero_left (x : nat) : x + zero = x
:= refl _
theorem add_succ_left (x y : nat) : x + (succ y) = succ (x + y)
:= refl _
definition is_zero (x : nat)
:= nat_rec true (λ n r, false) x
theorem is_zero_zero : is_zero zero
:= eqt_elim (refl _)
theorem not_is_zero_succ (x : nat) : ¬ is_zero (succ x)
:= eqf_elim (refl _)
theorem dichotomy (m : nat) : m = zero (∃ n, m = succ n)
:= nat_rec
(or_intro_left _ (refl zero))
(λ m H, or_intro_right _ (exists_intro m (refl (succ m))))
m
theorem is_zero_to_eq (x : nat) (H : is_zero x) : x = zero
:= or_elim (dichotomy x)
(assume Hz : x = zero, Hz)
(assume Hs : (∃ n, x = succ n),
exists_elim Hs (λ (w : nat) (Hw : x = succ w),
absurd_elim _ H (subst (symm Hw) (not_is_zero_succ w))))
theorem is_not_zero_to_eq {x : nat} (H : ¬ is_zero x) : ∃ n, x = succ n
:= or_elim (dichotomy x)
(assume Hz : x = zero,
absurd_elim _ (subst (symm Hz) is_zero_zero) H)
(assume Hs, Hs)
theorem not_zero_add (x y : nat) (H : ¬ is_zero y) : ¬ is_zero (x + y)
:= exists_elim (is_not_zero_to_eq H)
(λ (w : nat) (Hw : y = succ w),
have H1 : x + y = succ (x + w), from
calc x + y = x + succ w : {Hw}
... = succ (x + w) : refl _,
have H2 : ¬ is_zero (succ (x + w)), from
not_is_zero_succ (x+w),
subst (symm H1) H2)
inductive not_zero (x : nat) : Prop :=
| not_zero_intro : ¬ is_zero x → not_zero x
theorem not_zero_not_is_zero {x : nat} (H : not_zero x) : ¬ is_zero x
:= not_zero_rec (λ H1, H1) H
theorem not_zero_add_right [instance] (x y : nat) (H : not_zero y) : not_zero (x + y)
:= not_zero_intro (not_zero_add x y (not_zero_not_is_zero H))
theorem not_zero_succ [instance] (x : nat) : not_zero (succ x)
:= not_zero_intro (not_is_zero_succ x)
variable div : Π (x y : nat) {H : not_zero y}, nat
variables a b : nat
set_option pp.implicit true
opaque_hint (hiding [module])
check div a (succ b)
check (λ H : not_zero b, div a b)
check (succ zero)
check a + (succ zero)
check div a (a + (succ b))
opaque_hint (exposing [module])
check div a (a + (succ b))
opaque_hint (hiding add)
check div a (a + (succ b))
opaque_hint (exposing add)
check div a (a + (succ b))