17f2c240e1
add dependent elimination for acc.
143 lines
4.3 KiB
Text
143 lines
4.3 KiB
Text
/-
|
|
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Author: Leonardo de Moura
|
|
-/
|
|
prelude
|
|
import init.relation init.tactic
|
|
|
|
inductive acc {A : Type} (R : A → A → Prop) : A → Prop :=
|
|
intro : ∀x, (∀ y, R y x → acc R y) → acc R x
|
|
|
|
namespace acc
|
|
variables {A : Type} {R : A → A → Prop}
|
|
|
|
definition inv {x y : A} (H₁ : acc R x) (H₂ : R y x) : acc R y :=
|
|
acc.rec_on H₁ (λ x₁ ac₁ iH H₂, ac₁ y H₂) H₂
|
|
|
|
-- dependent elimination for acc
|
|
protected definition drec [recursor]
|
|
{C : Π (a : A), acc R a → Type}
|
|
(h₁ : Π (x : A) (acx : Π (y : A), R y x → acc R y),
|
|
(Π (y : A) (ryx : R y x), C y (acx y ryx)) → C x (acc.intro x acx))
|
|
{a : A} (h₂ : acc R a) : C a h₂ :=
|
|
begin
|
|
refine acc.rec _ h₂ h₂,
|
|
intro x acx ih h₂,
|
|
exact h₁ x acx (λ y ryx, ih y ryx (acx y ryx))
|
|
end
|
|
end acc
|
|
|
|
inductive well_founded [class] {A : Type} (R : A → A → Prop) : Prop :=
|
|
intro : (∀ a, acc R a) → well_founded R
|
|
|
|
namespace well_founded
|
|
definition apply [coercion] {A : Type} {R : A → A → Prop} (wf : well_founded R) : ∀a, acc R a :=
|
|
take a, well_founded.rec_on wf (λp, p) a
|
|
|
|
section
|
|
parameters {A : Type} {R : A → A → Prop}
|
|
local infix `≺`:50 := R
|
|
|
|
hypothesis [Hwf : well_founded R]
|
|
|
|
theorem recursion {C : A → Type} (a : A) (H : Πx, (Πy, y ≺ x → C y) → C x) : C a :=
|
|
acc.rec_on (Hwf a) (λ x₁ ac₁ iH, H x₁ iH)
|
|
|
|
theorem induction {C : A → Prop} (a : A) (H : ∀x, (∀y, y ≺ x → C y) → C x) : C a :=
|
|
recursion a H
|
|
|
|
variable {C : A → Type}
|
|
variable F : Πx, (Πy, y ≺ x → C y) → C x
|
|
|
|
definition fix_F (x : A) (a : acc R x) : C x :=
|
|
acc.rec_on a (λ x₁ ac₁ iH, F x₁ iH)
|
|
|
|
theorem fix_F_eq (x : A) (r : acc R x) :
|
|
fix_F F x r = F x (λ (y : A) (p : y ≺ x), fix_F F y (acc.inv r p)) :=
|
|
begin
|
|
induction r using acc.drec,
|
|
reflexivity -- proof is trivial due to proof irrelevance
|
|
end
|
|
end
|
|
|
|
variables {A : Type} {C : A → Type} {R : A → A → Prop}
|
|
|
|
-- Well-founded fixpoint
|
|
definition fix [Hwf : well_founded R] (F : Πx, (Πy, R y x → C y) → C x) (x : A) : C x :=
|
|
fix_F F x (Hwf x)
|
|
|
|
-- Well-founded fixpoint satisfies fixpoint equation
|
|
theorem fix_eq [Hwf : well_founded R] (F : Πx, (Πy, R y x → C y) → C x) (x : A) :
|
|
fix F x = F x (λy h, fix F y) :=
|
|
fix_F_eq F x (Hwf x)
|
|
end well_founded
|
|
|
|
open well_founded
|
|
|
|
-- Empty relation is well-founded
|
|
definition empty.wf {A : Type} : well_founded empty_relation :=
|
|
well_founded.intro (λ (a : A),
|
|
acc.intro a (λ (b : A) (lt : false), false.rec _ lt))
|
|
|
|
-- Subrelation of a well-founded relation is well-founded
|
|
namespace subrelation
|
|
section
|
|
parameters {A : Type} {R Q : A → A → Prop}
|
|
parameters (H₁ : subrelation Q R)
|
|
parameters (H₂ : well_founded R)
|
|
|
|
definition accessible {a : A} (ac : acc R a) : acc Q a :=
|
|
using H₁,
|
|
begin
|
|
induction ac with x ax ih, constructor,
|
|
exact λ (y : A) (lt : Q y x), ih y (H₁ lt)
|
|
end
|
|
|
|
definition wf : well_founded Q :=
|
|
well_founded.intro (λ a, accessible (H₂ a))
|
|
end
|
|
end subrelation
|
|
|
|
-- The inverse image of a well-founded relation is well-founded
|
|
namespace inv_image
|
|
section
|
|
parameters {A B : Type} {R : B → B → Prop}
|
|
parameters (f : A → B)
|
|
parameters (H : well_founded R)
|
|
|
|
private definition acc_aux {b : B} (ac : acc R b) : ∀ x, f x = b → acc (inv_image R f) x :=
|
|
begin
|
|
induction ac with x acx ih,
|
|
intro z e, constructor,
|
|
intro y lt, subst x,
|
|
exact ih (f y) lt y rfl
|
|
end
|
|
|
|
definition accessible {a : A} (ac : acc R (f a)) : acc (inv_image R f) a :=
|
|
acc_aux ac a rfl
|
|
|
|
definition wf : well_founded (inv_image R f) :=
|
|
well_founded.intro (λ a, accessible (H (f a)))
|
|
end
|
|
end inv_image
|
|
|
|
-- The transitive closure of a well-founded relation is well-founded
|
|
namespace tc
|
|
section
|
|
parameters {A : Type} {R : A → A → Prop}
|
|
local notation `R⁺` := tc R
|
|
|
|
definition accessible {z} (ac: acc R z) : acc R⁺ z :=
|
|
begin
|
|
induction ac with x acx ih,
|
|
constructor, intro y lt,
|
|
induction lt with a b rab a b c rab rbc ih₁ ih₂,
|
|
{exact ih a rab},
|
|
{exact acc.inv (ih₂ acx ih) rab}
|
|
end
|
|
|
|
definition wf (H : well_founded R) : well_founded R⁺ :=
|
|
well_founded.intro (λ a, accessible (H a))
|
|
end
|
|
end tc
|