lean2/library/algebra/interval.lean

182 lines
6.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Notation for intervals and some properties.
The mnemonic: o = open, c = closed, i = infinity. For example, Ioi a b is '(a, ∞).
-/
import .order data.set
open set
namespace interval
section order_pair
variables {A : Type} [order_pair A]
definition Ioo (a b : A) : set A := {x | a < x ∧ x < b}
definition Ioc (a b : A) : set A := {x | a < x ∧ x ≤ b}
definition Ico (a b : A) : set A := {x | a ≤ x ∧ x < b}
definition Icc (a b : A) : set A := {x | a ≤ x ∧ x ≤ b}
definition Ioi (a : A) : set A := {x | a < x}
definition Ici (a : A) : set A := {x | a ≤ x}
definition Iio (b : A) : set A := {x | x < b}
definition Iic (b : A) : set A := {x | x ≤ b}
notation `'(` a `, ` b `)` := Ioo a b
notation `'(` a `, ` b `]` := Ioc a b
notation `'[` a `, ` b `)` := Ico a b
notation `'[` a `, ` b `]` := Icc a b
notation `'(` a `, ` `∞` `)` := Ioi a
notation `'[` a `, ` `∞` `)` := Ici a
notation `'(` `-∞` `, ` b `)` := Iio b
notation `'(` `-∞` `, ` b `]` := Iic b
variables a b : A
proposition Ioi_inter_Iio : '(a, ∞) ∩ '(-∞, b) = '(a, b) := rfl
proposition Ici_inter_Iio : '[a, ∞) ∩ '(-∞, b) = '[a, b) := rfl
proposition Ioi_inter_Iic : '(a, ∞) ∩ '(-∞, b] = '(a, b] := rfl
proposition Ioc_inter_Iic : '[a, ∞) ∩ '(-∞, b] = '[a, b] := rfl
proposition Icc_self : '[a, a] = '{a} :=
set.ext (take x, iff.intro
(suppose x ∈ '[a, a],
have x = a, from le.antisymm (and.right this) (and.left this),
show x ∈ '{a}, from mem_singleton_of_eq this)
(suppose x ∈ '{a},
have x = a, from eq_of_mem_singleton this,
show a ≤ x ∧ x ≤ a, from and.intro (eq.subst this !le.refl) (eq.subst this !le.refl)))
proposition Icc_eq_empty {a b : A} (H : b < a) : '[a, b] = ∅ :=
eq_empty_of_forall_not_mem
(take x, suppose x ∈ '[a, b],
have a ≤ b, from le.trans (and.left this) (and.right this),
not_le_of_gt H this)
end order_pair
section strong_order_pair
variables {A : Type} [linear_strong_order_pair A]
proposition compl_Ici (a : A) : -'[a, ∞) = '(-∞, a) :=
ext (take x, iff.intro
(assume H, lt_of_not_ge H)
(assume H, not_le_of_gt H))
proposition compl_Iic (a : A) : -'(-∞, a] = '(a, ∞) :=
ext (take x, iff.intro
(assume H, lt_of_not_ge H)
(assume H, not_le_of_gt H))
proposition compl_Ioi (a : A) : -'(a, ∞) = '(-∞, a] :=
ext (take x, iff.intro
(assume H, le_of_not_gt H)
(assume H, not_lt_of_ge H))
proposition compl_Iio (a : A) : -'(-∞, a) = '[a, ∞) :=
ext (take x, iff.intro
(assume H, le_of_not_gt H)
(assume H, not_lt_of_ge H))
proposition Icc_eq_Icc_union_Ioc {a b c : A} (H1 : a ≤ b) (H2 : b ≤ c) :
'[a, c] = '[a, b] '(b, c] :=
set.ext (take x, iff.intro
(assume H3 : x ∈ '[a, c],
or.elim (le_or_gt x b)
(suppose x ≤ b,
or.inl (and.intro (and.left H3) this))
(suppose x > b,
or.inr (and.intro this (and.right H3))))
(suppose x ∈ '[a, b] '(b, c],
or.elim this
(suppose x ∈ '[a, b],
and.intro (and.left this) (le.trans (and.right this) H2))
(suppose x ∈ '(b, c],
and.intro (le_of_lt (lt_of_le_of_lt H1 (and.left this))) (and.right this))))
proposition singleton_union_Ioc {a b : A} (H : a ≤ b) : '{a} '(a, b] = '[a,b] :=
by rewrite [-Icc_self, Icc_eq_Icc_union_Ioc !le.refl H]
end strong_order_pair
/- intervals of natural numbers -/
namespace nat
open nat eq.ops
variables m n :
proposition Ioc_eq_Icc_succ : '(m, n] = '[succ m, n] := rfl
proposition Ioo_eq_Ico_succ : '(m, n) = '[succ m, n) := rfl
proposition Ico_succ_eq_Icc : '[m, succ n) = '[m, n] :=
set.ext (take x, iff.intro
(assume H, and.intro (and.left H) (le_of_lt_succ (and.right H)))
(assume H, and.intro (and.left H) (lt_succ_of_le (and.right H))))
proposition Ioo_succ_eq_Ioc : '(m, succ n) = '(m, n] :=
set.ext (take x, iff.intro
(assume H, and.intro (and.left H) (le_of_lt_succ (and.right H)))
(assume H, and.intro (and.left H) (lt_succ_of_le (and.right H))))
proposition Ici_zero : '[(0 : nat), ∞) = univ :=
eq_univ_of_forall (take x, zero_le x)
proposition Icc_zero (n : ) : '[0, n] = '(-∞, n] :=
have '[0, n] = '[0, ∞) ∩ '(-∞, n], from rfl,
by+ rewrite [this, Ici_zero, univ_inter]
proposition bij_on_add_Icc_zero (m n : ) : bij_on (add m) ('[0, n]) ('[m, m+n]) :=
have mapsto : ∀₀ i ∈ '[0, n], m + i ∈ '[m, m+n], from
(take i, assume imem,
have H1 : m ≤ m + i, from !le_add_right,
have H2 : m + i ≤ m + n, from add_le_add_left (and.right imem) m,
show m + i ∈ '[m, m+n], from and.intro H1 H2),
have injon : inj_on (add m) ('[0, n]), from
(take i j, assume Hi Hj H, !eq_of_add_eq_add_left H),
have surjon : surj_on (add m) ('[0, n]) ('[m, m+n]), from
(take j, assume Hj : j ∈ '[m, m+n],
obtain lej jle, from Hj,
let i := j - m in
have ile : i ≤ n, from calc
j - m ≤ m + n - m : nat.sub_le_sub_right jle m
... = n : nat.add_sub_cancel_left,
have iadd : m + i = j, by rewrite add.comm; apply nat.sub_add_cancel lej,
exists.intro i (and.intro (and.intro !zero_le ile) iadd)),
bij_on.mk mapsto injon surjon
end nat
section nat -- put the instances in the intervals namespace
open nat eq.ops
variables m n :
proposition nat.Iic_finite [instance] (n : ) : finite '(-∞, n] :=
nat.induction_on n
(have '(-∞, 0] ⊆ '{0}, from λ x H, mem_singleton_of_eq (le.antisymm H !zero_le),
finite_subset this)
(take n, assume ih : finite '(-∞, n],
have '(-∞, succ n] ⊆ '(-∞, n] '{succ n},
by intro x H; rewrite [mem_union_iff, mem_singleton_iff]; apply le_or_eq_succ_of_le_succ H,
finite_subset this)
proposition nat.Iio_finite [instance] (n : ) : finite '(-∞, n) :=
have '(-∞, n) ⊆ '(-∞, n], from λ x, le_of_lt,
finite_subset this
proposition nat.Icc_finite [instance] (m n : ) : finite ('[m, n]) :=
have '[m, n] ⊆ '(-∞, n], from λ x H, and.right H,
finite_subset this
proposition nat.Ico_finite [instance] (m n : ) : finite ('[m, n)) :=
have '[m, n) ⊆ '(-∞, n), from λ x H, and.right H,
finite_subset this
proposition nat.Ioc_finite [instance] (m n : ) : finite '(m, n] :=
have '(m, n] ⊆ '(-∞, n], from λ x H, and.right H,
finite_subset this
end nat
end interval