lean2/hott/homotopy/sphere.hlean

400 lines
13 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Declaration of the n-spheres
-/
import .susp types.trunc
open eq nat susp bool is_trunc unit pointed algebra
/-
We can define spheres with the following possible indices:
- trunc_index (defining S^-2 = S^-1 = empty)
- nat (forgetting that S^-1 = empty)
- nat, but counting wrong (S^0 = empty, S^1 = bool, ...)
- some new type "integers >= -1"
We choose the last option here.
-/
/- Sphere levels -/
inductive sphere_index : Type₀ :=
| minus_one : sphere_index
| succ : sphere_index → sphere_index
notation `ℕ₋₁` := sphere_index
namespace trunc_index
definition sub_one [reducible] (n : ℕ₋₁) : ℕ₋₂ :=
sphere_index.rec_on n -2 (λ n k, k.+1)
postfix `..-1`:(max+1) := sub_one
definition of_sphere_index [reducible] (n : ℕ₋₁) : ℕ₋₂ :=
n..-1.+1
-- we use a double dot to distinguish with the notation .-1 in trunc_index (of type → ℕ₋₂)
end trunc_index
namespace sphere_index
/-
notation for sphere_index is -1, 0, 1, ...
from 0 and up this comes from a coercion from num to sphere_index (via nat)
-/
postfix `.+1`:(max+1) := sphere_index.succ
postfix `.+2`:(max+1) := λ(n : sphere_index), (n .+1 .+1)
notation `-1` := minus_one
definition has_zero_sphere_index [instance] : has_zero ℕ₋₁ :=
has_zero.mk (succ minus_one)
definition has_one_sphere_index [instance] : has_one ℕ₋₁ :=
has_one.mk (succ (succ minus_one))
definition add_plus_one (n m : ℕ₋₁) : ℕ₋₁ :=
sphere_index.rec_on m n (λ k l, l .+1)
-- addition of sphere_indices, where (-1 + -1) is defined to be -1.
protected definition add (n m : ℕ₋₁) : ℕ₋₁ :=
sphere_index.cases_on m
(sphere_index.cases_on n -1 id)
(sphere_index.rec n (λn' r, succ r))
inductive le (a : ℕ₋₁) : ℕ₋₁ → Type :=
| sp_refl : le a a
| step : Π {b}, le a b → le a (b.+1)
infix ` +1+ `:65 := sphere_index.add_plus_one
definition has_add_sphere_index [instance] [priority 2000] [reducible] : has_add ℕ₋₁ :=
has_add.mk sphere_index.add
definition has_le_sphere_index [instance] : has_le ℕ₋₁ :=
has_le.mk sphere_index.le
definition sub_one [reducible] (n : ) : ℕ₋₁ :=
nat.rec_on n -1 (λ n k, k.+1)
postfix `..-1`:(max+1) := sub_one
definition of_nat [coercion] [reducible] (n : ) : ℕ₋₁ :=
n..-1.+1
-- we use a double dot to distinguish with the notation .-1 in trunc_index (of type → ℕ₋₂)
definition add_one [reducible] (n : ℕ₋₁) : :=
sphere_index.rec_on n 0 (λ n k, nat.succ k)
definition add_plus_one_of_nat (n m : ) : (n +1+ m) = sphere_index.of_nat (n + m + 1) :=
begin
induction m with m IH,
{ reflexivity },
{ exact ap succ IH}
end
definition succ_sub_one (n : ) : (nat.succ n)..-1 = n :> ℕ₋₁ :=
idp
definition add_sub_one (n m : ) : (n + m)..-1 = n..-1 +1+ m..-1 :> ℕ₋₁ :=
begin
induction m with m IH,
{ reflexivity },
{ exact ap succ IH }
end
definition succ_le_succ {n m : ℕ₋₁} (H : n ≤ m) : n.+1 ≤[ℕ₋₁] m.+1 :=
by induction H with m H IH; apply le.sp_refl; exact le.step IH
definition minus_one_le (n : ℕ₋₁) : -1 ≤[ℕ₋₁] n :=
by induction n with n IH; apply le.sp_refl; exact le.step IH
open decidable
protected definition has_decidable_eq [instance] : Π(n m : ℕ₋₁), decidable (n = m)
| has_decidable_eq -1 -1 := inl rfl
| has_decidable_eq (n.+1) -1 := inr (by contradiction)
| has_decidable_eq -1 (m.+1) := inr (by contradiction)
| has_decidable_eq (n.+1) (m.+1) :=
match has_decidable_eq n m with
| inl xeqy := inl (by rewrite xeqy)
| inr xney := inr (λ h : succ n = succ m, by injection h with xeqy; exact absurd xeqy xney)
end
definition not_succ_le_minus_two {n : sphere_index} (H : n .+1 ≤[ℕ₋₁] -1) : empty :=
by cases H
protected definition le_trans {n m k : ℕ₋₁} (H1 : n ≤[ℕ₋₁] m) (H2 : m ≤[ℕ₋₁] k) : n ≤[ℕ₋₁] k :=
begin
induction H2 with k H2 IH,
{ exact H1},
{ exact le.step IH}
end
definition le_of_succ_le_succ {n m : ℕ₋₁} (H : n.+1 ≤[ℕ₋₁] m.+1) : n ≤[ℕ₋₁] m :=
begin
cases H with m H',
{ apply le.sp_refl},
{ exact sphere_index.le_trans (le.step !le.sp_refl) H'}
end
theorem not_succ_le_self {n : ℕ₋₁} : ¬n.+1 ≤[ℕ₋₁] n :=
begin
induction n with n IH: intro H,
{ exact not_succ_le_minus_two H},
{ exact IH (le_of_succ_le_succ H)}
end
protected definition le_antisymm {n m : ℕ₋₁} (H1 : n ≤[ℕ₋₁] m) (H2 : m ≤[ℕ₋₁] n) : n = m :=
begin
induction H2 with n H2 IH,
{ reflexivity},
{ exfalso, apply @not_succ_le_self n, exact sphere_index.le_trans H1 H2}
end
protected definition le_succ {n m : ℕ₋₁} (H1 : n ≤[ℕ₋₁] m): n ≤[ℕ₋₁] m.+1 :=
le.step H1
definition add_plus_one_minus_one (n : ℕ₋₁) : n +1+ -1 = n := idp
definition add_plus_one_succ (n m : ℕ₋₁) : n +1+ (m.+1) = (n +1+ m).+1 := idp
definition minus_one_add_plus_one (n : ℕ₋₁) : -1 +1+ n = n :=
begin induction n with n IH, reflexivity, exact ap succ IH end
definition succ_add_plus_one (n m : ℕ₋₁) : (n.+1) +1+ m = (n +1+ m).+1 :=
begin induction m with m IH, reflexivity, exact ap succ IH end
definition sphere_index_of_nat_add_one (n : ℕ₋₁) : sphere_index.of_nat (add_one n) = n.+1 :=
begin induction n with n IH, reflexivity, exact ap succ IH end
definition add_one_succ (n : ℕ₋₁) : add_one (n.+1) = succ (add_one n) :=
by reflexivity
definition add_one_sub_one (n : ) : add_one (n..-1) = n :=
begin induction n with n IH, reflexivity, exact ap nat.succ IH end
definition add_one_of_nat (n : ) : add_one n = nat.succ n :=
ap nat.succ (add_one_sub_one n)
definition sphere_index.of_nat_succ (n : )
: sphere_index.of_nat (nat.succ n) = (sphere_index.of_nat n).+1 :=
begin induction n with n IH, reflexivity, exact ap succ IH end
/-
warning: if this coercion is available, the coercion → ℕ₋₂ is the composition of the coercions
→ ℕ₋₁ → ℕ₋₂. We don't want this composition as coercion, because it has worse computational
properties. You can rewrite it with trans_to_of_sphere_index_eq defined below.
-/
attribute trunc_index.of_sphere_index [coercion]
end sphere_index open sphere_index
definition weak_order_sphere_index [trans_instance] [reducible] : weak_order sphere_index :=
weak_order.mk le sphere_index.le.sp_refl @sphere_index.le_trans @sphere_index.le_antisymm
namespace trunc_index
definition sub_two_eq_sub_one_sub_one (n : ) : n.-2 = n..-1..-1 :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap trunc_index.succ IH}
end
definition of_nat_sub_one (n : )
: (sphere_index.of_nat n)..-1 = (trunc_index.sub_two n).+1 :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap trunc_index.succ IH}
end
definition sub_one_of_sphere_index (n : )
: of_sphere_index n..-1 = (trunc_index.sub_two n).+1 :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap trunc_index.succ IH}
end
definition succ_sub_one (n : ℕ₋₁) : n.+1..-1 = n :> ℕ₋₂ :=
idp
definition of_sphere_index_of_nat (n : )
: of_sphere_index (sphere_index.of_nat n) = of_nat n :> ℕ₋₂ :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap trunc_index.succ IH}
end
definition trans_to_of_sphere_index_eq (n : )
: trunc_index._trans_to_of_sphere_index n = of_nat n :> ℕ₋₂ :=
of_sphere_index_of_nat n
definition trunc_index_of_nat_add_one (n : ℕ₋₁)
: trunc_index.of_nat (add_one n) = (of_sphere_index n).+1 :=
begin induction n with n IH, reflexivity, exact ap succ IH end
definition of_sphere_index_succ (n : ℕ₋₁) : of_sphere_index (n.+1) = (of_sphere_index n).+1 :=
begin induction n with n IH, reflexivity, exact ap succ IH end
end trunc_index
open sphere_index equiv
definition sphere (n : ℕ₋₁) : Type₀ := iterate_susp (add_one n) empty
namespace sphere
export [notation] sphere_index
definition base {n : } : sphere n := north
definition pointed_sphere [instance] [constructor] (n : ) : pointed (sphere n) :=
pointed.mk base
definition psphere [constructor] (n : ) : Type* := pointed.mk' (sphere n)
namespace ops
abbreviation S := sphere
notation `S*` := psphere
end ops
open sphere.ops
definition sphere_minus_one : S -1 = empty := idp
definition sphere_succ [unfold_full] (n : ℕ₋₁) : S n.+1 = susp (S n) := idp
definition psphere_succ [unfold_full] (n : ) : S* (n + 1) = psusp (S* n) := idp
definition psphere_eq_iterate_susp (n : )
: S* n = pointed.MK (iterate_susp (succ n) empty) !north :=
begin
esimp,
apply ap (λx, pointed.MK (susp x) (@north x)); apply ap (λx, iterate_susp x empty),
apply add_one_sub_one
end
definition equator [constructor] (n : ) : S* n →* Ω (S* (succ n)) :=
loop_psusp_unit (S* n)
definition surf {n : } : Ω[n] (S* n) :=
begin
induction n with n s,
{ exact south },
{ exact (loopn_succ_in (S* (succ n)) n)⁻¹ᵉ* (apn n (equator n) s), }
end
definition bool_of_sphere [unfold 1] : S 0 → bool :=
proof susp.rec ff tt (λx, empty.elim x) qed
definition sphere_of_bool [unfold 1] : bool → S 0
| ff := proof north qed
| tt := proof south qed
definition sphere_equiv_bool [constructor] : S 0 ≃ bool :=
equiv.MK bool_of_sphere
sphere_of_bool
(λb, match b with | tt := idp | ff := idp end)
(λx, proof susp.rec_on x idp idp (empty.rec _) qed)
definition psphere_pequiv_pbool [constructor] : S* 0 ≃* pbool :=
pequiv_of_equiv sphere_equiv_bool idp
definition sphere_eq_bool : S 0 = bool :=
ua sphere_equiv_bool
definition sphere_eq_pbool : S* 0 = pbool :=
pType_eq sphere_equiv_bool idp
definition psphere_pmap_pequiv' (A : Type*) (n : ) : ppmap (S* n) A ≃* Ω[n] A :=
begin
revert A, induction n with n IH: intro A,
{ refine _ ⬝e* !pmap_pbool_pequiv, exact pequiv_ppcompose_right psphere_pequiv_pbool⁻¹ᵉ* },
{ refine psusp_adjoint_loop (S* n) A ⬝e* IH (Ω A) ⬝e* !loopn_succ_in⁻¹ᵉ* }
end
definition psphere_pmap_pequiv (A : Type*) (n : ) : ppmap (S* n) A ≃* Ω[n] A :=
begin
fapply pequiv_change_fun,
{ exact psphere_pmap_pequiv' A n },
{ exact papn_fun A surf },
{ revert A, induction n with n IH: intro A,
{ reflexivity },
{ intro f, refine ap !loopn_succ_in⁻¹ᵉ* (IH (Ω A) _ ⬝ !apn_pcompose _) ⬝ _,
exact !loopn_succ_in_inv_natural⁻¹* _ }}
end
protected definition elim {n : } {P : Type*} (p : Ω[n] P) : S* n →* P :=
!psphere_pmap_pequiv⁻¹ᵉ* p
-- definition elim_surf {n : } {P : Type*} (p : Ω[n] P) : apn n (sphere.elim p) surf = p :=
-- begin
-- induction n with n IH,
-- { esimp [apn,surf,sphere.elim,psphere_pmap_equiv], apply sorry},
-- { apply sorry}
-- end
end sphere
namespace sphere
open is_conn trunc_index sphere_index sphere.ops
-- Corollary 8.2.2
theorem is_conn_sphere [instance] (n : ℕ₋₁) : is_conn (n..-1) (S n) :=
begin
induction n with n IH,
{ apply is_conn_minus_two },
{ rewrite [trunc_index.succ_sub_one n, sphere.sphere_succ],
apply is_conn_susp }
end
theorem is_conn_psphere [instance] (n : ) : is_conn (n.-1) (S* n) :=
transport (λx, is_conn x (sphere n)) (of_nat_sub_one n) (is_conn_sphere n)
end sphere
open sphere sphere.ops
namespace is_trunc
open trunc_index
variables {n : } {A : Type}
definition is_trunc_of_psphere_pmap_equiv_constant
(H : Π(a : A) (f : S* n →* pointed.Mk a) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
begin
apply iff.elim_right !is_trunc_iff_is_contr_loop,
intro a,
apply is_trunc_equiv_closed, exact !psphere_pmap_pequiv,
fapply is_contr.mk,
{ exact pmap.mk (λx, a) idp},
{ intro f, fapply pmap_eq,
{ intro x, esimp, refine !respect_pt⁻¹ ⬝ (!H ⬝ !H⁻¹)},
{ rewrite [▸*,con.right_inv,▸*,con.left_inv]}}
end
definition is_trunc_iff_map_sphere_constant
(H : Π(f : S n → A) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
begin
apply is_trunc_of_psphere_pmap_equiv_constant,
intros, cases f with f p, esimp at *, apply H
end
definition psphere_pmap_equiv_constant_of_is_trunc' [H : is_trunc (n.-2.+1) A]
(a : A) (f : S* n →* pointed.Mk a) (x : S n) : f x = f base :=
begin
let H' := iff.elim_left (is_trunc_iff_is_contr_loop n A) H a,
note H'' := @is_trunc_equiv_closed_rev _ _ _ !psphere_pmap_pequiv H',
esimp at H'',
have p : f = pmap.mk (λx, f base) (respect_pt f),
by apply is_prop.elim,
exact ap10 (ap pmap.to_fun p) x
end
definition psphere_pmap_equiv_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
(a : A) (f : S* n →* pointed.Mk a) (x y : S n) : f x = f y :=
let H := psphere_pmap_equiv_constant_of_is_trunc' a f in !H ⬝ !H⁻¹
definition map_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
(f : S n → A) (x y : S n) : f x = f y :=
psphere_pmap_equiv_constant_of_is_trunc (f base) (pmap.mk f idp) x y
definition map_sphere_constant_of_is_trunc_self [H : is_trunc (n.-2.+1) A]
(f : S n → A) (x : S n) : map_sphere_constant_of_is_trunc f x x = idp :=
!con.right_inv
end is_trunc