400 lines
13 KiB
Text
400 lines
13 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
|
||
Declaration of the n-spheres
|
||
-/
|
||
|
||
import .susp types.trunc
|
||
|
||
open eq nat susp bool is_trunc unit pointed algebra
|
||
|
||
/-
|
||
We can define spheres with the following possible indices:
|
||
- trunc_index (defining S^-2 = S^-1 = empty)
|
||
- nat (forgetting that S^-1 = empty)
|
||
- nat, but counting wrong (S^0 = empty, S^1 = bool, ...)
|
||
- some new type "integers >= -1"
|
||
We choose the last option here.
|
||
-/
|
||
|
||
/- Sphere levels -/
|
||
|
||
inductive sphere_index : Type₀ :=
|
||
| minus_one : sphere_index
|
||
| succ : sphere_index → sphere_index
|
||
|
||
notation `ℕ₋₁` := sphere_index
|
||
|
||
namespace trunc_index
|
||
definition sub_one [reducible] (n : ℕ₋₁) : ℕ₋₂ :=
|
||
sphere_index.rec_on n -2 (λ n k, k.+1)
|
||
postfix `..-1`:(max+1) := sub_one
|
||
|
||
definition of_sphere_index [reducible] (n : ℕ₋₁) : ℕ₋₂ :=
|
||
n..-1.+1
|
||
|
||
-- we use a double dot to distinguish with the notation .-1 in trunc_index (of type ℕ → ℕ₋₂)
|
||
end trunc_index
|
||
|
||
namespace sphere_index
|
||
/-
|
||
notation for sphere_index is -1, 0, 1, ...
|
||
from 0 and up this comes from a coercion from num to sphere_index (via nat)
|
||
-/
|
||
|
||
postfix `.+1`:(max+1) := sphere_index.succ
|
||
postfix `.+2`:(max+1) := λ(n : sphere_index), (n .+1 .+1)
|
||
notation `-1` := minus_one
|
||
|
||
definition has_zero_sphere_index [instance] : has_zero ℕ₋₁ :=
|
||
has_zero.mk (succ minus_one)
|
||
|
||
definition has_one_sphere_index [instance] : has_one ℕ₋₁ :=
|
||
has_one.mk (succ (succ minus_one))
|
||
|
||
definition add_plus_one (n m : ℕ₋₁) : ℕ₋₁ :=
|
||
sphere_index.rec_on m n (λ k l, l .+1)
|
||
|
||
-- addition of sphere_indices, where (-1 + -1) is defined to be -1.
|
||
protected definition add (n m : ℕ₋₁) : ℕ₋₁ :=
|
||
sphere_index.cases_on m
|
||
(sphere_index.cases_on n -1 id)
|
||
(sphere_index.rec n (λn' r, succ r))
|
||
|
||
inductive le (a : ℕ₋₁) : ℕ₋₁ → Type :=
|
||
| sp_refl : le a a
|
||
| step : Π {b}, le a b → le a (b.+1)
|
||
|
||
infix ` +1+ `:65 := sphere_index.add_plus_one
|
||
|
||
definition has_add_sphere_index [instance] [priority 2000] [reducible] : has_add ℕ₋₁ :=
|
||
has_add.mk sphere_index.add
|
||
|
||
definition has_le_sphere_index [instance] : has_le ℕ₋₁ :=
|
||
has_le.mk sphere_index.le
|
||
|
||
definition sub_one [reducible] (n : ℕ) : ℕ₋₁ :=
|
||
nat.rec_on n -1 (λ n k, k.+1)
|
||
|
||
postfix `..-1`:(max+1) := sub_one
|
||
|
||
definition of_nat [coercion] [reducible] (n : ℕ) : ℕ₋₁ :=
|
||
n..-1.+1
|
||
|
||
-- we use a double dot to distinguish with the notation .-1 in trunc_index (of type ℕ → ℕ₋₂)
|
||
|
||
definition add_one [reducible] (n : ℕ₋₁) : ℕ :=
|
||
sphere_index.rec_on n 0 (λ n k, nat.succ k)
|
||
|
||
definition add_plus_one_of_nat (n m : ℕ) : (n +1+ m) = sphere_index.of_nat (n + m + 1) :=
|
||
begin
|
||
induction m with m IH,
|
||
{ reflexivity },
|
||
{ exact ap succ IH}
|
||
end
|
||
|
||
definition succ_sub_one (n : ℕ) : (nat.succ n)..-1 = n :> ℕ₋₁ :=
|
||
idp
|
||
|
||
definition add_sub_one (n m : ℕ) : (n + m)..-1 = n..-1 +1+ m..-1 :> ℕ₋₁ :=
|
||
begin
|
||
induction m with m IH,
|
||
{ reflexivity },
|
||
{ exact ap succ IH }
|
||
end
|
||
|
||
definition succ_le_succ {n m : ℕ₋₁} (H : n ≤ m) : n.+1 ≤[ℕ₋₁] m.+1 :=
|
||
by induction H with m H IH; apply le.sp_refl; exact le.step IH
|
||
|
||
definition minus_one_le (n : ℕ₋₁) : -1 ≤[ℕ₋₁] n :=
|
||
by induction n with n IH; apply le.sp_refl; exact le.step IH
|
||
|
||
open decidable
|
||
protected definition has_decidable_eq [instance] : Π(n m : ℕ₋₁), decidable (n = m)
|
||
| has_decidable_eq -1 -1 := inl rfl
|
||
| has_decidable_eq (n.+1) -1 := inr (by contradiction)
|
||
| has_decidable_eq -1 (m.+1) := inr (by contradiction)
|
||
| has_decidable_eq (n.+1) (m.+1) :=
|
||
match has_decidable_eq n m with
|
||
| inl xeqy := inl (by rewrite xeqy)
|
||
| inr xney := inr (λ h : succ n = succ m, by injection h with xeqy; exact absurd xeqy xney)
|
||
end
|
||
|
||
definition not_succ_le_minus_two {n : sphere_index} (H : n .+1 ≤[ℕ₋₁] -1) : empty :=
|
||
by cases H
|
||
|
||
protected definition le_trans {n m k : ℕ₋₁} (H1 : n ≤[ℕ₋₁] m) (H2 : m ≤[ℕ₋₁] k) : n ≤[ℕ₋₁] k :=
|
||
begin
|
||
induction H2 with k H2 IH,
|
||
{ exact H1},
|
||
{ exact le.step IH}
|
||
end
|
||
|
||
definition le_of_succ_le_succ {n m : ℕ₋₁} (H : n.+1 ≤[ℕ₋₁] m.+1) : n ≤[ℕ₋₁] m :=
|
||
begin
|
||
cases H with m H',
|
||
{ apply le.sp_refl},
|
||
{ exact sphere_index.le_trans (le.step !le.sp_refl) H'}
|
||
end
|
||
|
||
theorem not_succ_le_self {n : ℕ₋₁} : ¬n.+1 ≤[ℕ₋₁] n :=
|
||
begin
|
||
induction n with n IH: intro H,
|
||
{ exact not_succ_le_minus_two H},
|
||
{ exact IH (le_of_succ_le_succ H)}
|
||
end
|
||
|
||
protected definition le_antisymm {n m : ℕ₋₁} (H1 : n ≤[ℕ₋₁] m) (H2 : m ≤[ℕ₋₁] n) : n = m :=
|
||
begin
|
||
induction H2 with n H2 IH,
|
||
{ reflexivity},
|
||
{ exfalso, apply @not_succ_le_self n, exact sphere_index.le_trans H1 H2}
|
||
end
|
||
|
||
protected definition le_succ {n m : ℕ₋₁} (H1 : n ≤[ℕ₋₁] m): n ≤[ℕ₋₁] m.+1 :=
|
||
le.step H1
|
||
|
||
definition add_plus_one_minus_one (n : ℕ₋₁) : n +1+ -1 = n := idp
|
||
definition add_plus_one_succ (n m : ℕ₋₁) : n +1+ (m.+1) = (n +1+ m).+1 := idp
|
||
definition minus_one_add_plus_one (n : ℕ₋₁) : -1 +1+ n = n :=
|
||
begin induction n with n IH, reflexivity, exact ap succ IH end
|
||
definition succ_add_plus_one (n m : ℕ₋₁) : (n.+1) +1+ m = (n +1+ m).+1 :=
|
||
begin induction m with m IH, reflexivity, exact ap succ IH end
|
||
|
||
definition sphere_index_of_nat_add_one (n : ℕ₋₁) : sphere_index.of_nat (add_one n) = n.+1 :=
|
||
begin induction n with n IH, reflexivity, exact ap succ IH end
|
||
|
||
definition add_one_succ (n : ℕ₋₁) : add_one (n.+1) = succ (add_one n) :=
|
||
by reflexivity
|
||
|
||
definition add_one_sub_one (n : ℕ) : add_one (n..-1) = n :=
|
||
begin induction n with n IH, reflexivity, exact ap nat.succ IH end
|
||
|
||
definition add_one_of_nat (n : ℕ) : add_one n = nat.succ n :=
|
||
ap nat.succ (add_one_sub_one n)
|
||
|
||
definition sphere_index.of_nat_succ (n : ℕ)
|
||
: sphere_index.of_nat (nat.succ n) = (sphere_index.of_nat n).+1 :=
|
||
begin induction n with n IH, reflexivity, exact ap succ IH end
|
||
|
||
/-
|
||
warning: if this coercion is available, the coercion ℕ → ℕ₋₂ is the composition of the coercions
|
||
ℕ → ℕ₋₁ → ℕ₋₂. We don't want this composition as coercion, because it has worse computational
|
||
properties. You can rewrite it with trans_to_of_sphere_index_eq defined below.
|
||
-/
|
||
attribute trunc_index.of_sphere_index [coercion]
|
||
|
||
end sphere_index open sphere_index
|
||
|
||
definition weak_order_sphere_index [trans_instance] [reducible] : weak_order sphere_index :=
|
||
weak_order.mk le sphere_index.le.sp_refl @sphere_index.le_trans @sphere_index.le_antisymm
|
||
|
||
namespace trunc_index
|
||
definition sub_two_eq_sub_one_sub_one (n : ℕ) : n.-2 = n..-1..-1 :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ exact ap trunc_index.succ IH}
|
||
end
|
||
|
||
definition of_nat_sub_one (n : ℕ)
|
||
: (sphere_index.of_nat n)..-1 = (trunc_index.sub_two n).+1 :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ exact ap trunc_index.succ IH}
|
||
end
|
||
|
||
definition sub_one_of_sphere_index (n : ℕ)
|
||
: of_sphere_index n..-1 = (trunc_index.sub_two n).+1 :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ exact ap trunc_index.succ IH}
|
||
end
|
||
|
||
definition succ_sub_one (n : ℕ₋₁) : n.+1..-1 = n :> ℕ₋₂ :=
|
||
idp
|
||
|
||
definition of_sphere_index_of_nat (n : ℕ)
|
||
: of_sphere_index (sphere_index.of_nat n) = of_nat n :> ℕ₋₂ :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ exact ap trunc_index.succ IH}
|
||
end
|
||
|
||
definition trans_to_of_sphere_index_eq (n : ℕ)
|
||
: trunc_index._trans_to_of_sphere_index n = of_nat n :> ℕ₋₂ :=
|
||
of_sphere_index_of_nat n
|
||
|
||
definition trunc_index_of_nat_add_one (n : ℕ₋₁)
|
||
: trunc_index.of_nat (add_one n) = (of_sphere_index n).+1 :=
|
||
begin induction n with n IH, reflexivity, exact ap succ IH end
|
||
|
||
definition of_sphere_index_succ (n : ℕ₋₁) : of_sphere_index (n.+1) = (of_sphere_index n).+1 :=
|
||
begin induction n with n IH, reflexivity, exact ap succ IH end
|
||
|
||
end trunc_index
|
||
|
||
open sphere_index equiv
|
||
|
||
definition sphere (n : ℕ₋₁) : Type₀ := iterate_susp (add_one n) empty
|
||
|
||
namespace sphere
|
||
|
||
export [notation] sphere_index
|
||
|
||
definition base {n : ℕ} : sphere n := north
|
||
definition pointed_sphere [instance] [constructor] (n : ℕ) : pointed (sphere n) :=
|
||
pointed.mk base
|
||
definition psphere [constructor] (n : ℕ) : Type* := pointed.mk' (sphere n)
|
||
|
||
|
||
namespace ops
|
||
abbreviation S := sphere
|
||
notation `S*` := psphere
|
||
end ops
|
||
open sphere.ops
|
||
|
||
definition sphere_minus_one : S -1 = empty := idp
|
||
definition sphere_succ [unfold_full] (n : ℕ₋₁) : S n.+1 = susp (S n) := idp
|
||
definition psphere_succ [unfold_full] (n : ℕ) : S* (n + 1) = psusp (S* n) := idp
|
||
definition psphere_eq_iterate_susp (n : ℕ)
|
||
: S* n = pointed.MK (iterate_susp (succ n) empty) !north :=
|
||
begin
|
||
esimp,
|
||
apply ap (λx, pointed.MK (susp x) (@north x)); apply ap (λx, iterate_susp x empty),
|
||
apply add_one_sub_one
|
||
end
|
||
|
||
definition equator [constructor] (n : ℕ) : S* n →* Ω (S* (succ n)) :=
|
||
loop_psusp_unit (S* n)
|
||
|
||
definition surf {n : ℕ} : Ω[n] (S* n) :=
|
||
begin
|
||
induction n with n s,
|
||
{ exact south },
|
||
{ exact (loopn_succ_in (S* (succ n)) n)⁻¹ᵉ* (apn n (equator n) s), }
|
||
end
|
||
|
||
definition bool_of_sphere [unfold 1] : S 0 → bool :=
|
||
proof susp.rec ff tt (λx, empty.elim x) qed
|
||
|
||
definition sphere_of_bool [unfold 1] : bool → S 0
|
||
| ff := proof north qed
|
||
| tt := proof south qed
|
||
|
||
definition sphere_equiv_bool [constructor] : S 0 ≃ bool :=
|
||
equiv.MK bool_of_sphere
|
||
sphere_of_bool
|
||
(λb, match b with | tt := idp | ff := idp end)
|
||
(λx, proof susp.rec_on x idp idp (empty.rec _) qed)
|
||
|
||
definition psphere_pequiv_pbool [constructor] : S* 0 ≃* pbool :=
|
||
pequiv_of_equiv sphere_equiv_bool idp
|
||
|
||
definition sphere_eq_bool : S 0 = bool :=
|
||
ua sphere_equiv_bool
|
||
|
||
definition sphere_eq_pbool : S* 0 = pbool :=
|
||
pType_eq sphere_equiv_bool idp
|
||
|
||
definition psphere_pmap_pequiv' (A : Type*) (n : ℕ) : ppmap (S* n) A ≃* Ω[n] A :=
|
||
begin
|
||
revert A, induction n with n IH: intro A,
|
||
{ refine _ ⬝e* !pmap_pbool_pequiv, exact pequiv_ppcompose_right psphere_pequiv_pbool⁻¹ᵉ* },
|
||
{ refine psusp_adjoint_loop (S* n) A ⬝e* IH (Ω A) ⬝e* !loopn_succ_in⁻¹ᵉ* }
|
||
end
|
||
|
||
definition psphere_pmap_pequiv (A : Type*) (n : ℕ) : ppmap (S* n) A ≃* Ω[n] A :=
|
||
begin
|
||
fapply pequiv_change_fun,
|
||
{ exact psphere_pmap_pequiv' A n },
|
||
{ exact papn_fun A surf },
|
||
{ revert A, induction n with n IH: intro A,
|
||
{ reflexivity },
|
||
{ intro f, refine ap !loopn_succ_in⁻¹ᵉ* (IH (Ω A) _ ⬝ !apn_pcompose _) ⬝ _,
|
||
exact !loopn_succ_in_inv_natural⁻¹* _ }}
|
||
end
|
||
|
||
protected definition elim {n : ℕ} {P : Type*} (p : Ω[n] P) : S* n →* P :=
|
||
!psphere_pmap_pequiv⁻¹ᵉ* p
|
||
|
||
-- definition elim_surf {n : ℕ} {P : Type*} (p : Ω[n] P) : apn n (sphere.elim p) surf = p :=
|
||
-- begin
|
||
-- induction n with n IH,
|
||
-- { esimp [apn,surf,sphere.elim,psphere_pmap_equiv], apply sorry},
|
||
-- { apply sorry}
|
||
-- end
|
||
|
||
end sphere
|
||
|
||
namespace sphere
|
||
open is_conn trunc_index sphere_index sphere.ops
|
||
|
||
-- Corollary 8.2.2
|
||
theorem is_conn_sphere [instance] (n : ℕ₋₁) : is_conn (n..-1) (S n) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ apply is_conn_minus_two },
|
||
{ rewrite [trunc_index.succ_sub_one n, sphere.sphere_succ],
|
||
apply is_conn_susp }
|
||
end
|
||
|
||
theorem is_conn_psphere [instance] (n : ℕ) : is_conn (n.-1) (S* n) :=
|
||
transport (λx, is_conn x (sphere n)) (of_nat_sub_one n) (is_conn_sphere n)
|
||
|
||
end sphere
|
||
|
||
open sphere sphere.ops
|
||
|
||
namespace is_trunc
|
||
open trunc_index
|
||
variables {n : ℕ} {A : Type}
|
||
definition is_trunc_of_psphere_pmap_equiv_constant
|
||
(H : Π(a : A) (f : S* n →* pointed.Mk a) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
|
||
begin
|
||
apply iff.elim_right !is_trunc_iff_is_contr_loop,
|
||
intro a,
|
||
apply is_trunc_equiv_closed, exact !psphere_pmap_pequiv,
|
||
fapply is_contr.mk,
|
||
{ exact pmap.mk (λx, a) idp},
|
||
{ intro f, fapply pmap_eq,
|
||
{ intro x, esimp, refine !respect_pt⁻¹ ⬝ (!H ⬝ !H⁻¹)},
|
||
{ rewrite [▸*,con.right_inv,▸*,con.left_inv]}}
|
||
end
|
||
|
||
definition is_trunc_iff_map_sphere_constant
|
||
(H : Π(f : S n → A) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
|
||
begin
|
||
apply is_trunc_of_psphere_pmap_equiv_constant,
|
||
intros, cases f with f p, esimp at *, apply H
|
||
end
|
||
|
||
definition psphere_pmap_equiv_constant_of_is_trunc' [H : is_trunc (n.-2.+1) A]
|
||
(a : A) (f : S* n →* pointed.Mk a) (x : S n) : f x = f base :=
|
||
begin
|
||
let H' := iff.elim_left (is_trunc_iff_is_contr_loop n A) H a,
|
||
note H'' := @is_trunc_equiv_closed_rev _ _ _ !psphere_pmap_pequiv H',
|
||
esimp at H'',
|
||
have p : f = pmap.mk (λx, f base) (respect_pt f),
|
||
by apply is_prop.elim,
|
||
exact ap10 (ap pmap.to_fun p) x
|
||
end
|
||
|
||
definition psphere_pmap_equiv_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
|
||
(a : A) (f : S* n →* pointed.Mk a) (x y : S n) : f x = f y :=
|
||
let H := psphere_pmap_equiv_constant_of_is_trunc' a f in !H ⬝ !H⁻¹
|
||
|
||
definition map_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
|
||
(f : S n → A) (x y : S n) : f x = f y :=
|
||
psphere_pmap_equiv_constant_of_is_trunc (f base) (pmap.mk f idp) x y
|
||
|
||
definition map_sphere_constant_of_is_trunc_self [H : is_trunc (n.-2.+1) A]
|
||
(f : S n → A) (x : S n) : map_sphere_constant_of_is_trunc f x x = idp :=
|
||
!con.right_inv
|
||
|
||
end is_trunc
|