8f9405c8b3
This commits also adds a new unit test that demonstrates non-termination due to this kind of constraint. Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
25 lines
833 B
Text
25 lines
833 B
Text
Set: pp::colors
|
||
Set: pp::unicode
|
||
Assumed: a
|
||
Assumed: P
|
||
Assumed: f
|
||
Assumed: g
|
||
Assumed: H1
|
||
Assumed: H2
|
||
Assumed: H3
|
||
Proved: T1
|
||
Proved: T2
|
||
Proved: T3
|
||
Proved: T4
|
||
Proved: T5
|
||
Proved: T6
|
||
Proved: T7
|
||
Proved: T8
|
||
Theorem T1 : ∃ x y : ℤ, P (f y x) (f y x) := ExistsIntro (g a) (ExistsIntro a H1)
|
||
Theorem T2 : ∃ x : ℤ, P (f x (g x)) (f x (g x)) := ExistsIntro a H1
|
||
Theorem T3 : ∃ x : ℤ, P (f x x) (f x x) := ExistsIntro (g a) H2
|
||
Theorem T4 : ∃ x : ℤ, P (f (g a) x) (f x x) := ExistsIntro (g a) H2
|
||
Theorem T5 : ∃ x : ℤ, P x x := ExistsIntro (f (g a) (g a)) H2
|
||
Theorem T6 : ∃ x y : ℤ, P x y := ExistsIntro (f (g a) (g a)) (ExistsIntro (g a) H3)
|
||
Theorem T7 : ∃ x : ℤ, P (f x x) x := ExistsIntro (g a) H3
|
||
Theorem T8 : ∃ x y : ℤ, P (f x x) y := ExistsIntro (g a) (ExistsIntro (g a) H3)
|