412 lines
16 KiB
Text
412 lines
16 KiB
Text
/-
|
||
Copyright (c) 2015 Jacob Gross. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Jacob Gross, Jeremy Avigad
|
||
|
||
Extended reals.
|
||
-/
|
||
import data.real
|
||
open real eq.ops classical
|
||
|
||
-- This is a hack, to get around the fact that the top level names are inaccessible when
|
||
-- defining these theorems in the ereal namespace. Is there a better way?
|
||
private definition zero_mul' := @zero_mul
|
||
private definition mul_zero' := @mul_zero
|
||
private definition neg_neg' := @neg_neg
|
||
|
||
noncomputable theory
|
||
|
||
inductive ereal : Type :=
|
||
| of_real : ℝ → ereal
|
||
| infty : ereal
|
||
| neginfty : ereal
|
||
|
||
attribute ereal.of_real [coercion]
|
||
notation `∞` := ereal.infty
|
||
notation `-∞` := ereal.neginfty
|
||
|
||
namespace ereal
|
||
|
||
protected definition prio := num.pred real.prio
|
||
|
||
/- arithmetic operations on the ereals -/
|
||
|
||
definition ereal_has_zero [reducible] [instance] [priority ereal.prio] : has_zero ereal :=
|
||
has_zero.mk (of_real 0)
|
||
|
||
definition ereal_has_one [reducible] [instance] [priority ereal.prio] : has_one ereal :=
|
||
has_one.mk (of_real 1)
|
||
|
||
protected definition add : ereal → ereal → ereal
|
||
| (of_real x) (of_real y) := of_real (x + y)
|
||
| ∞ _ := ∞
|
||
| _ ∞ := ∞
|
||
| -∞ _ := -∞
|
||
| _ -∞ := -∞
|
||
|
||
protected definition neg : ereal → ereal
|
||
| (of_real x) := of_real (-x)
|
||
| ∞ := -∞
|
||
| -∞ := ∞
|
||
|
||
private definition blow_up [reducible] : ereal → ereal
|
||
| (of_real x) := if x = 0 then of_real 0 else if x > 0 then ∞ else -∞
|
||
| ∞ := ∞
|
||
| -∞ := -∞
|
||
|
||
protected definition mul : ereal → ereal → ereal
|
||
| (of_real x) (of_real y) := of_real (x * y)
|
||
| ∞ a := blow_up a
|
||
| a ∞ := blow_up a
|
||
| -∞ a := ereal.neg (blow_up a)
|
||
| a -∞ := ereal.neg (blow_up a)
|
||
|
||
definition ereal_has_add [reducible] [instance] [priority ereal.prio] : has_add ereal :=
|
||
has_add.mk ereal.add
|
||
|
||
definition ereal_has_neg [reducible] [instance] [priority ereal.prio] : has_neg ereal :=
|
||
has_neg.mk ereal.neg
|
||
|
||
protected definition sub (u v : ereal) : ereal := u + -v
|
||
|
||
definition ereal_has_sub [reducible] [instance] [priority ereal.prio] : has_sub ereal :=
|
||
has_sub.mk ereal.sub
|
||
|
||
definition ereal_has_mul [reducible] [instance] [priority ereal.prio] : has_mul ereal :=
|
||
has_mul.mk ereal.mul
|
||
|
||
protected theorem zero_def : (0 : ereal) = of_real 0 := rfl
|
||
|
||
protected theorem one_def : (1 : ereal) = of_real 1 := rfl
|
||
|
||
protected theorem add_def (x y : ereal) : x + y = ereal.add x y := rfl
|
||
|
||
protected theorem neg_def (x : ereal) : -x = ereal.neg x := rfl
|
||
|
||
protected theorem sub_eq_add_neg (u v : ereal) : u - v = u + -v := rfl
|
||
|
||
protected theorem mul_def (x y : ereal) : x * y = ereal.mul x y := rfl
|
||
|
||
theorem of_real.inj {x y : real} (H : of_real x = of_real y) : x = y :=
|
||
ereal.no_confusion H (assume H1, H1)
|
||
|
||
abbreviation eq_of_of_real_eq_of_real := @of_real.inj
|
||
|
||
theorem of_real_add (x y : real) : of_real (x + y) = of_real x + of_real y := rfl
|
||
|
||
theorem of_real_mul (x y : real) : of_real (x * y) = of_real x * of_real y := rfl
|
||
|
||
theorem infty_ne_neg_infty : ∞ ≠ -∞ := ereal.no_confusion
|
||
|
||
theorem infty_ne_of_real (x : real) : ∞ ≠ of_real x := ereal.no_confusion
|
||
|
||
theorem neg_infty_ne_of_real (x : real) : -∞ ≠ of_real x := ereal.no_confusion
|
||
|
||
/- properties of the arithmetic operations -/
|
||
|
||
protected theorem add_comm : ∀ u v : ereal, u + v = v + u
|
||
| (of_real x) (of_real y) := congr_arg of_real !add.comm
|
||
| ∞ v := by rewrite[*ereal.add_def, ↑ereal.add]
|
||
| u ∞ := by rewrite[*ereal.add_def, ↑ereal.add]
|
||
| -∞ v := by rewrite[*ereal.add_def, ↑ereal.add]
|
||
| u -∞ := by rewrite[*ereal.add_def, ↑ereal.add]
|
||
|
||
theorem infty_add : ∀ u, ∞ + u = ∞
|
||
| (of_real x) := rfl
|
||
| ∞ := rfl
|
||
| -∞ := rfl
|
||
|
||
theorem add_infty : ∀ u, u + ∞ = ∞
|
||
| (of_real x) := rfl
|
||
| ∞ := rfl
|
||
| -∞ := rfl
|
||
|
||
protected theorem add_assoc : ∀ u v w : ereal, (u + v) + w = u + (v + w)
|
||
| (of_real x) (of_real y) (of_real z) := congr_arg of_real !add.assoc
|
||
| ∞ v w := by rewrite [*infty_add, *add_infty]
|
||
| u ∞ w := by rewrite [*infty_add, *add_infty, infty_add]
|
||
| u v ∞ := by rewrite [*infty_add, *add_infty]
|
||
| (of_real x) (of_real y) -∞ := by rewrite[*ereal.add_def, ↑ereal.add]
|
||
| (of_real x) -∞ (of_real z) := by rewrite[*ereal.add_def, ↑ereal.add]
|
||
| -∞ (of_real y) (of_real z) := by rewrite[*ereal.add_def, ↑ereal.add]
|
||
| (of_real x) -∞ -∞ := by rewrite[*ereal.add_def, ↑ereal.add]
|
||
| -∞ (of_real y) -∞ := rfl
|
||
| -∞ -∞ (of_real z) := by rewrite[*ereal.add_def, ↑ereal.add]
|
||
| -∞ -∞ -∞ := rfl
|
||
|
||
protected theorem zero_add : ∀ u : ereal, 0 + u = u
|
||
| (of_real x) := congr_arg of_real !real.zero_add
|
||
| ∞ := rfl
|
||
| -∞ := rfl
|
||
|
||
protected theorem add_zero : ∀ u : ereal, u + 0 = u :=
|
||
by intro u; rewrite [ereal.add_comm, ereal.zero_add]
|
||
|
||
protected theorem mul_comm : ∀ u v : ereal, u * v = v * u
|
||
| (of_real x) (of_real y) := congr_arg of_real !mul.comm
|
||
| ∞ a := by rewrite [*ereal.mul_def, ↑ereal.mul]
|
||
| a ∞ := by rewrite [*ereal.mul_def, ↑ereal.mul]
|
||
| -∞ a := by rewrite [*ereal.mul_def, ↑ereal.mul]
|
||
| a -∞ := by rewrite [*ereal.mul_def, ↑ereal.mul]
|
||
|
||
protected theorem neg_neg : ∀ u : ereal, -(-u) = u
|
||
| ∞ := rfl
|
||
| (of_real x) := by rewrite [*ereal.neg_def, ↑ereal.neg, ▸*,
|
||
(neg_neg' x)]
|
||
| -∞ := rfl
|
||
|
||
theorem neg_infty : -∞ = - ∞ := rfl
|
||
|
||
protected theorem neg_zero : -(0 : ereal) = 0 := rfl
|
||
|
||
theorem infty_mul_pos {x : real} (H : x > 0) : ∞ * x = ∞ :=
|
||
have H1 : x ≠ 0, from ne_of_gt H,
|
||
by+ rewrite [*ereal.mul_def, ↑ereal.mul, if_neg H1, if_pos H]
|
||
|
||
theorem pos_mul_infty {x : real} (H : x > 0) : x * ∞ = ∞ :=
|
||
by rewrite [ereal.mul_comm, infty_mul_pos H]
|
||
|
||
theorem infty_mul_neg {x : real} (H : x < 0) : ∞ * x = -∞ :=
|
||
have H1 : x ≠ 0, from ne_of_lt H,
|
||
have H2 : ¬ x > 0, from not_lt_of_gt H,
|
||
by+ rewrite [*ereal.mul_def, ↑ereal.mul, if_neg H1, if_neg H2]
|
||
|
||
theorem neg_mul_infty {x : real} (H : x < 0) : x * ∞ = -∞ :=
|
||
by rewrite [ereal.mul_comm, infty_mul_neg H]
|
||
|
||
private theorem infty_mul_zero : ∞ * 0 = 0 :=
|
||
by rewrite [*ereal.mul_def, ↑ereal.mul, ereal.zero_def, ↑blow_up, if_pos rfl]
|
||
|
||
private theorem zero_mul_infty : 0 * ∞ = 0 :=
|
||
by rewrite [ereal.mul_comm, infty_mul_zero]
|
||
|
||
theorem infty_mul_infty : ∞ * ∞ = ∞ := rfl
|
||
|
||
protected theorem neg_of_real (x : real) : -(of_real x) = of_real (-x) :=
|
||
rfl
|
||
|
||
private theorem aux1 : ∀ v : ereal, -∞ * v = -(∞ * v)
|
||
| ∞ := rfl
|
||
| (of_real x) := rfl
|
||
| -∞ := rfl
|
||
|
||
private theorem aux2 : ∀ u : ereal, -u * ∞ = -(u * ∞)
|
||
| ∞ := rfl
|
||
| (of_real x) := lt.by_cases
|
||
(assume H : x < 0,
|
||
by rewrite [ereal.neg_of_real, pos_mul_infty (neg_pos_of_neg H),
|
||
neg_mul_infty H])
|
||
(assume H : x = 0,
|
||
by rewrite [H, ereal.neg_zero, *zero_mul_infty, ereal.neg_zero])
|
||
(assume H : x > 0,
|
||
by rewrite [ereal.neg_of_real, neg_mul_infty (neg_neg_of_pos H),
|
||
pos_mul_infty H])
|
||
| -∞ := rfl
|
||
|
||
theorem ereal_neg_mul : ∀ u v : ereal, -u * v = -(u * v)
|
||
| ∞ v := aux1 v
|
||
| -∞ v := by rewrite [aux1, *ereal.neg_neg]
|
||
| u ∞ := by rewrite [-aux2]
|
||
| u -∞ := by rewrite [ereal.mul_comm, ereal.mul_comm u,
|
||
*aux1, ereal.mul_comm, aux2, *ereal.neg_neg]
|
||
| (of_real x) (of_real y) := congr_arg of_real (eq.symm (neg_mul_eq_neg_mul x y))
|
||
|
||
theorem ereal_mul_neg (u v : ereal) : u * -v = -(u * v) :=
|
||
by rewrite [*ereal.mul_comm u, ereal_neg_mul]
|
||
|
||
protected theorem mul_zero : ∀ u : ereal, u * 0 = 0
|
||
| ∞ := infty_mul_zero
|
||
| -∞ := by rewrite [neg_infty, ereal_neg_mul, infty_mul_zero]
|
||
| (of_real x) := congr_arg of_real (mul_zero' x)
|
||
|
||
protected theorem zero_mul (u : ereal) : 0 * u = 0 :=
|
||
by rewrite [ereal.mul_comm, ereal.mul_zero]
|
||
|
||
private theorem aux3 : ∀ u, ∞ * (∞ * u) = ∞ * u
|
||
| ∞ := rfl
|
||
| (of_real x) := if H : x = 0 then
|
||
by rewrite [*ereal.mul_def, ↑ereal.mul, ↑blow_up, *H, *if_pos rfl]
|
||
else if H1 : x > 0 then
|
||
by rewrite [*ereal.mul_def, ↑ereal.mul, ↑blow_up, if_neg H, if_pos H1]
|
||
else
|
||
by rewrite [*ereal.mul_def, ↑ereal.mul, ↑blow_up, if_neg H, if_neg H1]
|
||
| -∞ := rfl
|
||
|
||
private theorem aux4 (x y : real) : ∞ * x * y = ∞ * (x * y) :=
|
||
lt.by_cases
|
||
(assume H : x < 0,
|
||
lt.by_cases
|
||
(assume H1 : y < 0, by rewrite [infty_mul_neg H, neg_infty, ereal_neg_mul, -of_real_mul,
|
||
infty_mul_neg H1, infty_mul_pos (mul_pos_of_neg_of_neg H H1)])
|
||
(assume H1 : y = 0, by rewrite [H1, *ereal.mul_zero])
|
||
(assume H1 : y > 0, by rewrite [infty_mul_neg H, neg_infty, *ereal_neg_mul, -of_real_mul,
|
||
infty_mul_pos H1, infty_mul_neg (mul_neg_of_neg_of_pos H H1)]))
|
||
(assume H : x = 0,
|
||
by rewrite [H, ereal.mul_zero, *ereal.zero_mul, ereal.mul_zero])
|
||
(assume H : x > 0,
|
||
lt.by_cases
|
||
(assume H1 : y < 0, by rewrite [infty_mul_pos H, infty_mul_neg H1, -of_real_mul,
|
||
infty_mul_neg (mul_neg_of_pos_of_neg H H1)])
|
||
(assume H1 : y = 0, by rewrite [H1, *ereal.mul_zero])
|
||
(assume H1 : y > 0, by rewrite [infty_mul_pos H, infty_mul_pos H1, -of_real_mul,
|
||
infty_mul_pos (mul_pos H H1)]))
|
||
|
||
private theorem aux5 : ∀ u v, ∞ * u * v = ∞ * (u * v)
|
||
| ∞ v := by rewrite [infty_mul_infty, aux3]
|
||
| u ∞ := by rewrite [-*ereal.mul_comm ∞]
|
||
| -∞ v := by rewrite [neg_infty, *ereal_neg_mul, *ereal_mul_neg, ereal_neg_mul, infty_mul_infty,
|
||
aux3]
|
||
| u -∞ := by rewrite [neg_infty, *ereal_mul_neg]
|
||
| (of_real x) (of_real y) := aux4 x y
|
||
|
||
protected theorem mul_assoc : ∀ u v w : ereal, u * v * w = u * (v * w)
|
||
| ∞ v w := !aux5
|
||
| u ∞ w := by rewrite [-*ereal.mul_comm ∞, *ereal.mul_comm u, *aux5, *ereal.mul_comm u]
|
||
| u v ∞ := by rewrite [-*ereal.mul_comm ∞, *ereal.mul_comm u, aux5]
|
||
| -∞ v w := by rewrite [neg_infty, *ereal_neg_mul, aux5]
|
||
| u -∞ w := by rewrite [neg_infty, *ereal_mul_neg, *ereal_neg_mul, ereal_mul_neg, *ereal.mul_comm u,
|
||
*aux5, ereal.mul_comm u]
|
||
| u v -∞ := by rewrite [neg_infty, *ereal_mul_neg, *ereal.mul_comm u, -*ereal.mul_comm ∞, aux5]
|
||
| (of_real x) (of_real y) (of_real z) := congr_arg of_real (mul.assoc x y z)
|
||
|
||
protected theorem one_mul : ∀ u : ereal, of_real 1 * u = u
|
||
| (of_real x) := !real.one_mul ▸ rfl
|
||
| ∞ := pos_mul_infty zero_lt_one
|
||
| -∞ := by rewrite [neg_infty, ereal_mul_neg, pos_mul_infty zero_lt_one]
|
||
|
||
protected theorem mul_one (u : ereal) : u * 1 = u :=
|
||
by rewrite [ereal.mul_comm, ereal.one_mul]
|
||
|
||
/- instantiating arithmetic structures -/
|
||
|
||
-- Note that distributivity fails, e.g. ∞ ⬝ (-1 + 1) ≠ ∞ * -1 + ∞ * 1
|
||
|
||
protected definition comm_monoid [reducible] [trans_instance] :
|
||
comm_monoid ereal :=
|
||
⦃comm_monoid,
|
||
mul := ereal.mul,
|
||
mul_assoc := ereal.mul_assoc,
|
||
one := 1,
|
||
one_mul := ereal.one_mul,
|
||
mul_one := ereal.mul_one,
|
||
mul_comm := ereal.mul_comm
|
||
⦄
|
||
|
||
protected definition add_comm_monoid [reducible] [trans_instance] :
|
||
add_comm_monoid ereal :=
|
||
⦃add_comm_monoid,
|
||
add := ereal.add,
|
||
add_assoc := ereal.add_assoc,
|
||
zero := 0,
|
||
zero_add := ereal.zero_add,
|
||
add_zero := ereal.add_zero,
|
||
add_comm := ereal.add_comm
|
||
⦄
|
||
|
||
/- ordering on the ereals -/
|
||
|
||
protected definition le : ereal → ereal → Prop
|
||
| u ∞ := true
|
||
| -∞ v := true
|
||
| (of_real x) (of_real y) := x ≤ y
|
||
| (of_real x) -∞ := false
|
||
| ∞ (of_real y) := false
|
||
| ∞ -∞ := false
|
||
|
||
definition ereal_has_le [reducible] [instance] [priority ereal.prio] :
|
||
has_le ereal :=
|
||
has_le.mk ereal.le
|
||
|
||
theorem of_real_le_of_real (x y : real) : of_real x ≤ of_real y ↔ x ≤ y :=
|
||
!iff.refl
|
||
|
||
theorem le_infty : ∀ u, u ≤ ∞
|
||
| ∞ := trivial
|
||
| (of_real x) := trivial
|
||
| -∞ := trivial
|
||
|
||
theorem neg_infty_le : ∀ v, -∞ ≤ v
|
||
| ∞ := trivial
|
||
| (of_real x) := trivial
|
||
| -∞ := trivial
|
||
|
||
protected theorem le_refl : ∀ u : ereal, u ≤ u
|
||
| ∞ := trivial
|
||
| -∞ := trivial
|
||
| (of_real x) := by rewrite [of_real_le_of_real]; apply le.refl
|
||
|
||
protected theorem le_trans : ∀ u v w : ereal, u ≤ v → v ≤ w → u ≤ w
|
||
| u v ∞ H1 H2 := !le_infty
|
||
| -∞ v w H1 H2 := !neg_infty_le
|
||
| u ∞ (of_real x) H1 H2 := false.elim H2
|
||
| ∞ (of_real x) v H1 H2 := false.elim H1
|
||
| ∞ -∞ v H1 H2 := false.elim H1
|
||
| u (of_real x) -∞ H1 H2 := false.elim H2
|
||
| u ∞ -∞ H1 H2 := false.elim H2
|
||
| (of_real x) -∞ v H1 H2 := false.elim H1
|
||
| (of_real x) (of_real y) (of_real z) H1 H2 :=
|
||
iff.mpr !of_real_le_of_real
|
||
(le.trans (iff.mp !of_real_le_of_real H1) (iff.mp !of_real_le_of_real H2))
|
||
|
||
protected theorem le_antisymm : ∀ u v : ereal, u ≤ v → v ≤ u → u = v
|
||
| ∞ ∞ H1 H2 := rfl
|
||
| ∞ (of_real x) H1 H2 := false.elim H1
|
||
| ∞ -∞ H1 H2 := false.elim H1
|
||
| -∞ -∞ H1 H2 := rfl
|
||
| -∞ (of_real x) H1 H2 := false.elim H2
|
||
| -∞ ∞ H1 H2 := false.elim H2
|
||
| (of_real x) ∞ H1 H2 := false.elim H2
|
||
| (of_real x) -∞ H1 H2 := false.elim H1
|
||
| (of_real x) (of_real y) H1 H2 :=
|
||
congr_arg of_real (le.antisymm (iff.mp !of_real_le_of_real H1) (iff.mp !of_real_le_of_real H2))
|
||
|
||
protected definition lt (x y : ereal) : Prop := x ≤ y ∧ x ≠ y
|
||
|
||
definition ereal_has_lt [reducible] [instance] [priority ereal.prio] :
|
||
has_lt ereal :=
|
||
has_lt.mk ereal.lt
|
||
|
||
protected theorem le_iff_lt_or_eq (u v : ereal) : u ≤ v ↔ u < v ∨ u = v :=
|
||
iff.intro
|
||
(assume H : u ≤ v,
|
||
by_cases
|
||
(assume H1 : u = v, or.inr H1)
|
||
(assume H1 : u ≠ v, or.inl (and.intro H H1)))
|
||
(assume H : u < v ∨ u = v,
|
||
or.elim H
|
||
(assume H1 : u < v, and.left H1)
|
||
(assume H1 : u = v, by rewrite H1; apply ereal.le_refl))
|
||
|
||
protected theorem le_total : ∀ u v : ereal, u ≤ v ∨ v ≤ u
|
||
| u ∞ := or.inl (le_infty u)
|
||
| u -∞ := or.inr (neg_infty_le u)
|
||
| ∞ v := or.inr (le_infty v)
|
||
| -∞ v := or.inl (neg_infty_le v)
|
||
| (of_real x) (of_real y) :=
|
||
or.elim (le.total x y)
|
||
(assume H : x ≤[real] y, or.inl (iff.mpr !of_real_le_of_real H))
|
||
(assume H : x ≥[real] y, or.inr (iff.mpr !of_real_le_of_real H))
|
||
|
||
theorem neg_infty_lt_infty : -∞ < ∞ := and.intro trivial (ne.symm infty_ne_neg_infty)
|
||
|
||
theorem neg_infty_lt_of_real (x : real) : -∞ < of_real x := and.intro trivial !neg_infty_ne_of_real
|
||
|
||
theorem of_real_lt_infty (x : real) : of_real x < ∞ := and.intro trivial (ne.symm !infty_ne_of_real)
|
||
|
||
protected definition decidable_linear_order [reducible] [trans_instance] :
|
||
decidable_linear_order ereal :=
|
||
⦃decidable_linear_order,
|
||
le := ereal.le,
|
||
le_refl := ereal.le_refl,
|
||
le_trans := ereal.le_trans,
|
||
le_antisymm := ereal.le_antisymm,
|
||
lt := ereal.lt,
|
||
le_iff_lt_or_eq := ereal.le_iff_lt_or_eq,
|
||
lt_irrefl := abstract λ u H, and.right H rfl end,
|
||
decidable_lt := abstract λ u v : ereal, prop_decidable (u < v) end,
|
||
le_total := ereal.le_total
|
||
⦄
|
||
|
||
-- TODO : we still need some properties relating the arithmetic operations and the order.
|
||
|
||
end ereal
|