29a0d3109b
if we don't this, then 'if-then-else' expressions depending on theorems such as 'and_decidable', 'or_decidable' will not compute inside the kernel
197 lines
5.3 KiB
Text
197 lines
5.3 KiB
Text
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
-- Authors: Leonardo de Moura, Jeremy Avigad
|
||
|
||
import general_notation .eq
|
||
|
||
-- and
|
||
-- ---
|
||
inductive and (a b : Prop) : Prop :=
|
||
intro : a → b → and a b
|
||
|
||
notation a /\ b := and a b
|
||
notation a ∧ b := and a b
|
||
|
||
variables {a b c d : Prop}
|
||
|
||
namespace and
|
||
theorem elim (H₁ : a ∧ b) (H₂ : a → b → c) : c :=
|
||
rec H₂ H₁
|
||
|
||
definition elim_left (H : a ∧ b) : a :=
|
||
rec (λa b, a) H
|
||
|
||
definition elim_right (H : a ∧ b) : b :=
|
||
rec (λa b, b) H
|
||
|
||
theorem swap (H : a ∧ b) : b ∧ a :=
|
||
intro (elim_right H) (elim_left H)
|
||
|
||
definition not_left (b : Prop) (Hna : ¬a) : ¬(a ∧ b) :=
|
||
assume H : a ∧ b, absurd (elim_left H) Hna
|
||
|
||
definition not_right (a : Prop) {b : Prop} (Hnb : ¬b) : ¬(a ∧ b) :=
|
||
assume H : a ∧ b, absurd (elim_right H) Hnb
|
||
|
||
theorem imp_and (H₁ : a ∧ b) (H₂ : a → c) (H₃ : b → d) : c ∧ d :=
|
||
elim H₁ (assume Ha : a, assume Hb : b, intro (H₂ Ha) (H₃ Hb))
|
||
|
||
theorem imp_left (H₁ : a ∧ c) (H : a → b) : b ∧ c :=
|
||
elim H₁ (assume Ha : a, assume Hc : c, intro (H Ha) Hc)
|
||
|
||
theorem imp_right (H₁ : c ∧ a) (H : a → b) : c ∧ b :=
|
||
elim H₁ (assume Hc : c, assume Ha : a, intro Hc (H Ha))
|
||
end and
|
||
|
||
-- or
|
||
-- --
|
||
inductive or (a b : Prop) : Prop :=
|
||
intro_left : a → or a b,
|
||
intro_right : b → or a b
|
||
|
||
notation a `\/` b := or a b
|
||
notation a ∨ b := or a b
|
||
|
||
namespace or
|
||
definition inl (Ha : a) : a ∨ b :=
|
||
intro_left b Ha
|
||
|
||
definition inr (Hb : b) : a ∨ b :=
|
||
intro_right a Hb
|
||
|
||
theorem elim (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → c) : c :=
|
||
rec H₂ H₃ H₁
|
||
|
||
theorem elim3 (H : a ∨ b ∨ c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d :=
|
||
elim H Ha (assume H₂, elim H₂ Hb Hc)
|
||
|
||
theorem resolve_right (H₁ : a ∨ b) (H₂ : ¬a) : b :=
|
||
elim H₁ (assume Ha, absurd Ha H₂) (assume Hb, Hb)
|
||
|
||
theorem resolve_left (H₁ : a ∨ b) (H₂ : ¬b) : a :=
|
||
elim H₁ (assume Ha, Ha) (assume Hb, absurd Hb H₂)
|
||
|
||
theorem swap (H : a ∨ b) : b ∨ a :=
|
||
elim H (assume Ha, inr Ha) (assume Hb, inl Hb)
|
||
|
||
definition not_intro (Hna : ¬a) (Hnb : ¬b) : ¬(a ∨ b) :=
|
||
assume H : a ∨ b, or.rec_on H
|
||
(assume Ha, absurd Ha Hna)
|
||
(assume Hb, absurd Hb Hnb)
|
||
|
||
theorem imp_or (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → d) : c ∨ d :=
|
||
elim H₁
|
||
(assume Ha : a, inl (H₂ Ha))
|
||
(assume Hb : b, inr (H₃ Hb))
|
||
|
||
theorem imp_or_left (H₁ : a ∨ c) (H : a → b) : b ∨ c :=
|
||
elim H₁
|
||
(assume H₂ : a, inl (H H₂))
|
||
(assume H₂ : c, inr H₂)
|
||
|
||
theorem imp_or_right (H₁ : c ∨ a) (H : a → b) : c ∨ b :=
|
||
elim H₁
|
||
(assume H₂ : c, inl H₂)
|
||
(assume H₂ : a, inr (H H₂))
|
||
end or
|
||
|
||
theorem not_not_em {p : Prop} : ¬¬(p ∨ ¬p) :=
|
||
assume not_em : ¬(p ∨ ¬p),
|
||
have Hnp : ¬p, from
|
||
assume Hp : p, absurd (or.inl Hp) not_em,
|
||
absurd (or.inr Hnp) not_em
|
||
|
||
-- iff
|
||
-- ---
|
||
definition iff (a b : Prop) := (a → b) ∧ (b → a)
|
||
|
||
notation a <-> b := iff a b
|
||
notation a ↔ b := iff a b
|
||
|
||
namespace iff
|
||
definition def : (a ↔ b) = ((a → b) ∧ (b → a)) :=
|
||
rfl
|
||
|
||
definition intro (H₁ : a → b) (H₂ : b → a) : a ↔ b :=
|
||
and.intro H₁ H₂
|
||
|
||
definition elim (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c :=
|
||
and.rec H₁ H₂
|
||
|
||
definition elim_left (H : a ↔ b) : a → b :=
|
||
elim (assume H₁ H₂, H₁) H
|
||
|
||
definition mp := @elim_left
|
||
|
||
definition elim_right (H : a ↔ b) : b → a :=
|
||
elim (assume H₁ H₂, H₂) H
|
||
|
||
definition flip_sign (H₁ : a ↔ b) : ¬a ↔ ¬b :=
|
||
intro
|
||
(assume Hna, mt (elim_right H₁) Hna)
|
||
(assume Hnb, mt (elim_left H₁) Hnb)
|
||
|
||
definition refl (a : Prop) : a ↔ a :=
|
||
intro (assume H, H) (assume H, H)
|
||
|
||
definition rfl {a : Prop} : a ↔ a :=
|
||
refl a
|
||
|
||
theorem trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c :=
|
||
intro
|
||
(assume Ha, elim_left H₂ (elim_left H₁ Ha))
|
||
(assume Hc, elim_right H₁ (elim_right H₂ Hc))
|
||
|
||
theorem symm (H : a ↔ b) : b ↔ a :=
|
||
intro
|
||
(assume Hb, elim_right H Hb)
|
||
(assume Ha, elim_left H Ha)
|
||
|
||
theorem true_elim (H : a ↔ true) : a :=
|
||
mp (symm H) trivial
|
||
|
||
theorem false_elim (H : a ↔ false) : ¬a :=
|
||
assume Ha : a, mp H Ha
|
||
end iff
|
||
|
||
calc_refl iff.refl
|
||
calc_trans iff.trans
|
||
|
||
open eq.ops
|
||
|
||
theorem eq_to_iff {a b : Prop} (H : a = b) : a ↔ b :=
|
||
iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb)
|
||
|
||
-- comm and assoc for and / or
|
||
-- ---------------------------
|
||
namespace and
|
||
theorem comm : a ∧ b ↔ b ∧ a :=
|
||
iff.intro (λH, swap H) (λH, swap H)
|
||
|
||
theorem assoc : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) :=
|
||
iff.intro
|
||
(assume H, intro
|
||
(elim_left (elim_left H))
|
||
(intro (elim_right (elim_left H)) (elim_right H)))
|
||
(assume H, intro
|
||
(intro (elim_left H) (elim_left (elim_right H)))
|
||
(elim_right (elim_right H)))
|
||
end and
|
||
|
||
namespace or
|
||
theorem comm : a ∨ b ↔ b ∨ a :=
|
||
iff.intro (λH, swap H) (λH, swap H)
|
||
|
||
theorem assoc : (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) :=
|
||
iff.intro
|
||
(assume H, elim H
|
||
(assume H₁, elim H₁
|
||
(assume Ha, inl Ha)
|
||
(assume Hb, inr (inl Hb)))
|
||
(assume Hc, inr (inr Hc)))
|
||
(assume H, elim H
|
||
(assume Ha, (inl (inl Ha)))
|
||
(assume H₁, elim H₁
|
||
(assume Hb, inl (inr Hb))
|
||
(assume Hc, inr Hc)))
|
||
end or
|