106 lines
4.4 KiB
Text
106 lines
4.4 KiB
Text
/-
|
|
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Leonardo de Moura
|
|
|
|
Very simple (sqrt n) function that returns s s.t.
|
|
s*s ≤ n ≤ s*s + s + s
|
|
-/
|
|
import data.nat.order data.nat.sub
|
|
|
|
namespace nat
|
|
open decidable
|
|
|
|
-- This is the simplest possible function that just performs a linear search
|
|
definition sqrt_aux : nat → nat → nat
|
|
| 0 n := 0
|
|
| (succ s) n := if (succ s)*(succ s) ≤ n then succ s else sqrt_aux s n
|
|
|
|
theorem sqrt_aux_succ_of_pos {s n} : (succ s)*(succ s) ≤ n → sqrt_aux (succ s) n = (succ s) :=
|
|
assume h, if_pos h
|
|
|
|
theorem sqrt_aux_succ_of_neg {s n} : ¬ (succ s)*(succ s) ≤ n → sqrt_aux (succ s) n = sqrt_aux s n :=
|
|
assume h, if_neg h
|
|
|
|
theorem sqrt_aux_of_le : ∀ {s n : nat}, s * s ≤ n → sqrt_aux s n = s
|
|
| 0 n h := rfl
|
|
| (succ s) n h := by rewrite [sqrt_aux_succ_of_pos h]
|
|
|
|
definition sqrt (n : nat) : nat :=
|
|
sqrt_aux n n
|
|
|
|
theorem sqrt_aux_lower : ∀ {s n : nat}, s ≤ n → sqrt_aux s n * sqrt_aux s n ≤ n
|
|
| 0 n h := h
|
|
| (succ s) n h := by_cases
|
|
(λ h₁ : (succ s)*(succ s) ≤ n, by rewrite [sqrt_aux_succ_of_pos h₁]; exact h₁)
|
|
(λ h₂ : ¬ (succ s)*(succ s) ≤ n,
|
|
assert aux : s ≤ n, from lt.step (lt_of_succ_le h),
|
|
by rewrite [sqrt_aux_succ_of_neg h₂]; exact (sqrt_aux_lower aux))
|
|
|
|
theorem sqrt_lower (n : nat) : sqrt n * sqrt n ≤ n :=
|
|
sqrt_aux_lower (le.refl n)
|
|
|
|
theorem sqrt_aux_upper : ∀ {s n : nat}, n ≤ s*s + s + s → n ≤ sqrt_aux s n * sqrt_aux s n + sqrt_aux s n + sqrt_aux s n
|
|
| 0 n h := h
|
|
| (succ s) n h := by_cases
|
|
(λ h₁ : (succ s)*(succ s) ≤ n,
|
|
by rewrite [sqrt_aux_succ_of_pos h₁]; exact h)
|
|
(λ h₂ : ¬ (succ s)*(succ s) ≤ n,
|
|
assert h₃ : n < (succ s) * (succ s), from lt_of_not_le h₂,
|
|
assert h₄ : n ≤ s * s + s + s, by rewrite [succ_mul_succ_eq at h₃]; exact h₃,
|
|
by rewrite [sqrt_aux_succ_of_neg h₂]; exact (sqrt_aux_upper h₄))
|
|
|
|
theorem sqrt_upper (n : nat) : n ≤ sqrt n * sqrt n + sqrt n + sqrt n :=
|
|
have aux : n ≤ n*n + n + n, from le_add_of_le_right (le_add_of_le_left (le.refl n)),
|
|
sqrt_aux_upper aux
|
|
|
|
private theorem le_squared : ∀ (n : nat), n ≤ n*n
|
|
| 0 := !le.refl
|
|
| (succ n) :=
|
|
have aux₁ : 1 ≤ succ n, from succ_le_succ !zero_le,
|
|
assert aux₂ : 1 * succ n ≤ succ n * succ n, from mul_le_mul aux₁ !le.refl,
|
|
by rewrite [one_mul at aux₂]; exact aux₂
|
|
|
|
theorem sqrt_aux_offset_eq {n k : nat} (h₁ : k ≤ n + n) : ∀ {s}, s ≥ n → sqrt_aux s (n*n + k) = n
|
|
| 0 h₂ :=
|
|
assert neqz : n = 0, from eq_zero_of_le_zero h₂,
|
|
by rewrite neqz
|
|
| (succ s) h₂ := by_cases
|
|
(λ hl : (succ s)*(succ s) ≤ n*n + k,
|
|
have l₁ : n*n + k ≤ n*n + n + n, from by rewrite [add.assoc]; exact (add_le_add_left h₁ (n*n)),
|
|
assert l₂ : n*n + k < n*n + n + n + 1, from l₁,
|
|
have l₃ : n*n + k < (succ n)*(succ n), by rewrite [-succ_mul_succ_eq at l₂]; exact l₂,
|
|
assert l₄ : (succ s)*(succ s) < (succ n)*(succ n), from lt_of_le_of_lt hl l₃,
|
|
have ng : ¬ succ s > (succ n), from
|
|
assume g : succ s > succ n,
|
|
have g₁ : (succ s)*(succ s) > (succ n)*(succ n), from mul_lt_mul_of_le_of_le g g,
|
|
absurd (lt.trans g₁ l₄) !lt.irrefl,
|
|
have sslesn : succ s ≤ succ n, from le_of_not_lt ng,
|
|
have ssnesn : succ s ≠ succ n, from
|
|
assume sseqsn : succ s = succ n,
|
|
by rewrite [sseqsn at l₄]; exact (absurd l₄ !lt.irrefl),
|
|
have sslen : succ s ≤ n, from lt_of_le_and_ne sslesn ssnesn,
|
|
assert sseqn : succ s = n, from le.antisymm sslen h₂,
|
|
by rewrite [sqrt_aux_succ_of_pos hl]; exact sseqn)
|
|
(λ hg : ¬ (succ s)*(succ s) ≤ n*n + k,
|
|
or.elim (eq_or_lt_of_le h₂)
|
|
(λ neqss : n = succ s,
|
|
have p : n*n ≤ n*n + k, from !le_add_right,
|
|
have n : ¬ n*n ≤ n*n + k, by rewrite [-neqss at hg]; exact hg,
|
|
absurd p n)
|
|
(λ sgen : s ≥ n,
|
|
by rewrite [sqrt_aux_succ_of_neg hg]; exact (sqrt_aux_offset_eq sgen)))
|
|
|
|
theorem sqrt_offset_eq {n k : nat} : k ≤ n + n → sqrt (n*n + k) = n :=
|
|
assume h,
|
|
have h₁ : n ≤ n*n + k, from le.trans !le_squared !le_add_right,
|
|
sqrt_aux_offset_eq h h₁
|
|
|
|
theorem sqrt_eq (n : nat) : sqrt (n*n) = n :=
|
|
sqrt_offset_eq !zero_le
|
|
|
|
theorem mul_square_cancel {a b : nat} : a*a = b*b → a = b :=
|
|
assume h,
|
|
assert aux : sqrt (a*a) = sqrt (b*b), by rewrite h,
|
|
by rewrite [*sqrt_eq at aux]; exact aux
|
|
end nat
|