64 lines
2.1 KiB
Text
64 lines
2.1 KiB
Text
----------------------------------------------------------------------------------------------------
|
||
--- Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
||
--- Released under Apache 2.0 license as described in the file LICENSE.
|
||
--- Author: Jeremy Avigad, Leonardo de Moura
|
||
----------------------------------------------------------------------------------------------------
|
||
|
||
import logic.axioms.funext data.bool
|
||
using eq_ops bool
|
||
|
||
namespace set
|
||
definition set (T : Type) := T → bool
|
||
definition mem {T : Type} (x : T) (s : set T) := (s x) = tt
|
||
infix `∈`:50 := mem
|
||
|
||
section
|
||
parameter {T : Type}
|
||
|
||
definition empty : set T := λx, ff
|
||
notation `∅`:max := empty
|
||
|
||
theorem mem_empty (x : T) : ¬ (x ∈ ∅) :=
|
||
assume H : x ∈ ∅, absurd H ff_ne_tt
|
||
|
||
definition univ : set T := λx, tt
|
||
|
||
theorem mem_univ (x : T) : x ∈ univ := refl _
|
||
|
||
definition inter (A B : set T) : set T := λx, A x && B x
|
||
infixl `∩`:70 := inter
|
||
|
||
theorem mem_inter (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B) :=
|
||
iff_intro
|
||
(assume H, and_intro (band_eq_tt_elim_left H) (band_eq_tt_elim_right H))
|
||
(assume H,
|
||
have e1 : A x = tt, from and_elim_left H,
|
||
have e2 : B x = tt, from and_elim_right H,
|
||
show A x && B x = tt, from e1⁻¹ ▸ e2⁻¹ ▸ band_tt_left tt)
|
||
|
||
theorem inter_comm (A B : set T) : A ∩ B = B ∩ A :=
|
||
funext (λx, band_comm (A x) (B x))
|
||
|
||
theorem inter_assoc (A B C : set T) : (A ∩ B) ∩ C = A ∩ (B ∩ C) :=
|
||
funext (λx, band_assoc (A x) (B x) (C x))
|
||
|
||
definition union (A B : set T) : set T := λx, A x || B x
|
||
infixl `∪`:65 := union
|
||
|
||
theorem mem_union (x : T) (A B : set T) : x ∈ A ∪ B ↔ (x ∈ A ∨ x ∈ B) :=
|
||
iff_intro
|
||
(assume H, bor_to_or H)
|
||
(assume H, or_elim H
|
||
(assume Ha : A x = tt,
|
||
show A x || B x = tt, from Ha⁻¹ ▸ bor_tt_left (B x))
|
||
(assume Hb : B x = tt,
|
||
show A x || B x = tt, from Hb⁻¹ ▸ bor_tt_right (A x)))
|
||
|
||
theorem union_comm (A B : set T) : A ∪ B = B ∪ A :=
|
||
funext (λx, bor_comm (A x) (B x))
|
||
|
||
theorem union_assoc (A B C : set T) : (A ∪ B) ∪ C = A ∪ (B ∪ C) :=
|
||
funext (λx, bor_assoc (A x) (B x) (C x))
|
||
|
||
end
|
||
end set
|