a618bd7d6c
Before this commit we were using overloading for concrete structures and type classes for abstract ones. This is the first of series of commits that implement this modification
441 lines
17 KiB
Text
441 lines
17 KiB
Text
/-
|
||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn, Jeremy Avigad
|
||
|
||
The order relation on the integers. We show that int is an instance of linear_comm_ordered_ring
|
||
and transfer the results.
|
||
-/
|
||
import .basic algebra.ordered_ring
|
||
open nat
|
||
open - [notations] algebra
|
||
open decidable
|
||
open int eq.ops
|
||
|
||
namespace int
|
||
|
||
private definition nonneg (a : ℤ) : Prop := int.cases_on a (take n, true) (take n, false)
|
||
protected definition le (a b : ℤ) : Prop := nonneg (b - a)
|
||
|
||
definition int_has_le [instance] [reducible] [priority int.prio]: has_le int :=
|
||
has_le.mk int.le
|
||
|
||
protected definition lt (a b : ℤ) : Prop := (a + 1) ≤ b
|
||
|
||
definition int_has_lt [instance] [reducible] [priority int.prio]: has_lt int :=
|
||
has_lt.mk int.lt
|
||
|
||
local attribute nonneg [reducible]
|
||
private definition decidable_nonneg [instance] (a : ℤ) : decidable (nonneg a) := int.cases_on a _ _
|
||
definition decidable_le [instance] (a b : ℤ) : decidable (a ≤ b) := decidable_nonneg _
|
||
definition decidable_lt [instance] (a b : ℤ) : decidable (a < b) := decidable_nonneg _
|
||
|
||
private theorem nonneg.elim {a : ℤ} : nonneg a → ∃n : ℕ, a = n :=
|
||
int.cases_on a (take n H, exists.intro n rfl) (take n', false.elim)
|
||
|
||
private theorem nonneg_or_nonneg_neg (a : ℤ) : nonneg a ∨ nonneg (-a) :=
|
||
int.cases_on a (take n, or.inl trivial) (take n, or.inr trivial)
|
||
|
||
theorem le.intro {a b : ℤ} {n : ℕ} (H : a + n = b) : a ≤ b :=
|
||
have n = b - a, from eq_add_neg_of_add_eq (begin rewrite [add.comm, H] end), -- !add.comm ▸ H),
|
||
show nonneg (b - a), from this ▸ trivial
|
||
|
||
theorem le.elim {a b : ℤ} (H : a ≤ b) : ∃n : ℕ, a + n = b :=
|
||
obtain (n : ℕ) (H1 : b - a = n), from nonneg.elim H,
|
||
exists.intro n (!add.comm ▸ iff.mpr !add_eq_iff_eq_add_neg (H1⁻¹))
|
||
|
||
theorem le.total (a b : ℤ) : a ≤ b ∨ b ≤ a :=
|
||
or.imp_right
|
||
(assume H : nonneg (-(b - a)),
|
||
have -(b - a) = a - b, from !neg_sub,
|
||
show nonneg (a - b), from this ▸ H)
|
||
(nonneg_or_nonneg_neg (b - a))
|
||
|
||
theorem of_nat_le_of_nat_of_le {m n : ℕ} (H : #nat m ≤ n) : of_nat m ≤ of_nat n :=
|
||
obtain (k : ℕ) (Hk : m + k = n), from nat.le.elim H,
|
||
le.intro (Hk ▸ (of_nat_add m k)⁻¹)
|
||
|
||
theorem le_of_of_nat_le_of_nat {m n : ℕ} (H : of_nat m ≤ of_nat n) : (#nat m ≤ n) :=
|
||
obtain (k : ℕ) (Hk : of_nat m + of_nat k = of_nat n), from le.elim H,
|
||
have m + k = n, from of_nat.inj (of_nat_add m k ⬝ Hk),
|
||
nat.le.intro this
|
||
|
||
theorem of_nat_le_of_nat_iff (m n : ℕ) : of_nat m ≤ of_nat n ↔ m ≤ n :=
|
||
iff.intro le_of_of_nat_le_of_nat of_nat_le_of_nat_of_le
|
||
|
||
theorem lt_add_succ (a : ℤ) (n : ℕ) : a < a + succ n :=
|
||
le.intro (show a + 1 + n = a + succ n, from
|
||
calc
|
||
a + 1 + n = a + (1 + n) : add.assoc
|
||
... = a + (n + 1) : by rewrite (add.comm 1 n)
|
||
... = a + succ n : rfl)
|
||
|
||
theorem lt.intro {a b : ℤ} {n : ℕ} (H : a + succ n = b) : a < b :=
|
||
H ▸ lt_add_succ a n
|
||
|
||
theorem lt.elim {a b : ℤ} (H : a < b) : ∃n : ℕ, a + succ n = b :=
|
||
obtain (n : ℕ) (Hn : a + 1 + n = b), from le.elim H,
|
||
have a + succ n = b, from
|
||
calc
|
||
a + succ n = a + 1 + n : by rewrite [add.assoc, add.comm 1 n]
|
||
... = b : Hn,
|
||
exists.intro n this
|
||
|
||
theorem of_nat_lt_of_nat_iff (n m : ℕ) : of_nat n < of_nat m ↔ n < m :=
|
||
calc
|
||
of_nat n < of_nat m ↔ of_nat n + 1 ≤ of_nat m : iff.refl
|
||
... ↔ of_nat (nat.succ n) ≤ of_nat m : of_nat_succ n ▸ !iff.refl
|
||
... ↔ nat.succ n ≤ m : of_nat_le_of_nat_iff
|
||
... ↔ n < m : iff.symm (lt_iff_succ_le _ _)
|
||
|
||
theorem lt_of_of_nat_lt_of_nat {m n : ℕ} (H : of_nat m < of_nat n) : #nat m < n :=
|
||
iff.mp !of_nat_lt_of_nat_iff H
|
||
|
||
theorem of_nat_lt_of_nat_of_lt {m n : ℕ} (H : #nat m < n) : of_nat m < of_nat n :=
|
||
iff.mpr !of_nat_lt_of_nat_iff H
|
||
|
||
/- show that the integers form an ordered additive group -/
|
||
|
||
theorem le.refl (a : ℤ) : a ≤ a :=
|
||
le.intro (add_zero a)
|
||
|
||
theorem le.trans {a b c : ℤ} (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c :=
|
||
obtain (n : ℕ) (Hn : a + n = b), from le.elim H1,
|
||
obtain (m : ℕ) (Hm : b + m = c), from le.elim H2,
|
||
have a + of_nat (n + m) = c, from
|
||
calc
|
||
a + of_nat (n + m) = a + (of_nat n + m) : {of_nat_add n m}
|
||
... = a + n + m : (add.assoc a n m)⁻¹
|
||
... = b + m : {Hn}
|
||
... = c : Hm,
|
||
le.intro this
|
||
|
||
theorem le.antisymm : ∀ {a b : ℤ}, a ≤ b → b ≤ a → a = b :=
|
||
take a b : ℤ, assume (H₁ : a ≤ b) (H₂ : b ≤ a),
|
||
obtain (n : ℕ) (Hn : a + n = b), from le.elim H₁,
|
||
obtain (m : ℕ) (Hm : b + m = a), from le.elim H₂,
|
||
have a + of_nat (n + m) = a + 0, from
|
||
calc
|
||
a + of_nat (n + m) = a + (of_nat n + m) : of_nat_add
|
||
... = a + n + m : add.assoc
|
||
... = b + m : Hn
|
||
... = a : Hm
|
||
... = a + 0 : add_zero,
|
||
have of_nat (n + m) = of_nat 0, from add.left_cancel this,
|
||
have n + m = 0, from of_nat.inj this,
|
||
have n = 0, from nat.eq_zero_of_add_eq_zero_right this,
|
||
show a = b, from
|
||
calc
|
||
a = a + 0 : add_zero
|
||
... = a + n : this
|
||
... = b : Hn
|
||
|
||
theorem lt.irrefl (a : ℤ) : ¬ a < a :=
|
||
(suppose a < a,
|
||
obtain (n : ℕ) (Hn : a + succ n = a), from lt.elim this,
|
||
have a + succ n = a + 0, from
|
||
Hn ⬝ !add_zero⁻¹,
|
||
!succ_ne_zero (of_nat.inj (add.left_cancel this)))
|
||
|
||
theorem ne_of_lt {a b : ℤ} (H : a < b) : a ≠ b :=
|
||
(suppose a = b, absurd (this ▸ H) (lt.irrefl b))
|
||
|
||
theorem le_of_lt {a b : ℤ} (H : a < b) : a ≤ b :=
|
||
obtain (n : ℕ) (Hn : a + succ n = b), from lt.elim H,
|
||
le.intro Hn
|
||
|
||
theorem lt_iff_le_and_ne (a b : ℤ) : a < b ↔ (a ≤ b ∧ a ≠ b) :=
|
||
iff.intro
|
||
(assume H, and.intro (le_of_lt H) (ne_of_lt H))
|
||
(assume H,
|
||
have a ≤ b, from and.elim_left H,
|
||
have a ≠ b, from and.elim_right H,
|
||
obtain (n : ℕ) (Hn : a + n = b), from le.elim `a ≤ b`,
|
||
have n ≠ 0, from (assume H' : n = 0, `a ≠ b` (!add_zero ▸ H' ▸ Hn)),
|
||
obtain (k : ℕ) (Hk : n = nat.succ k), from nat.exists_eq_succ_of_ne_zero this,
|
||
lt.intro (Hk ▸ Hn))
|
||
|
||
theorem le_iff_lt_or_eq (a b : ℤ) : a ≤ b ↔ (a < b ∨ a = b) :=
|
||
iff.intro
|
||
(assume H,
|
||
by_cases
|
||
(suppose a = b, or.inr this)
|
||
(suppose a ≠ b,
|
||
obtain (n : ℕ) (Hn : a + n = b), from le.elim H,
|
||
have n ≠ 0, from (assume H' : n = 0, `a ≠ b` (!add_zero ▸ H' ▸ Hn)),
|
||
obtain (k : ℕ) (Hk : n = nat.succ k), from nat.exists_eq_succ_of_ne_zero this,
|
||
or.inl (lt.intro (Hk ▸ Hn))))
|
||
(assume H,
|
||
or.elim H
|
||
(assume H1, le_of_lt H1)
|
||
(assume H1, H1 ▸ !le.refl))
|
||
|
||
theorem lt_succ (a : ℤ) : a < a + 1 :=
|
||
le.refl (a + 1)
|
||
|
||
theorem add_le_add_left {a b : ℤ} (H : a ≤ b) (c : ℤ) : c + a ≤ c + b :=
|
||
obtain (n : ℕ) (Hn : a + n = b), from le.elim H,
|
||
have H2 : c + a + n = c + b, from
|
||
calc
|
||
c + a + n = c + (a + n) : add.assoc c a n
|
||
... = c + b : {Hn},
|
||
le.intro H2
|
||
|
||
theorem add_lt_add_left {a b : ℤ} (H : a < b) (c : ℤ) : c + a < c + b :=
|
||
let H' := le_of_lt H in
|
||
(iff.mpr (lt_iff_le_and_ne _ _)) (and.intro (add_le_add_left H' _)
|
||
(take Heq, let Heq' := add_left_cancel Heq in
|
||
!lt.irrefl (Heq' ▸ H)))
|
||
|
||
theorem mul_nonneg {a b : ℤ} (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a * b :=
|
||
obtain (n : ℕ) (Hn : 0 + n = a), from le.elim Ha,
|
||
obtain (m : ℕ) (Hm : 0 + m = b), from le.elim Hb,
|
||
le.intro
|
||
(eq.symm
|
||
(calc
|
||
a * b = (0 + n) * b : Hn
|
||
... = n * b : zero_add
|
||
... = n * (0 + m) : {Hm⁻¹}
|
||
... = n * m : zero_add
|
||
... = 0 + n * m : zero_add))
|
||
|
||
theorem mul_pos {a b : ℤ} (Ha : 0 < a) (Hb : 0 < b) : 0 < a * b :=
|
||
obtain (n : ℕ) (Hn : 0 + nat.succ n = a), from lt.elim Ha,
|
||
obtain (m : ℕ) (Hm : 0 + nat.succ m = b), from lt.elim Hb,
|
||
lt.intro
|
||
(eq.symm
|
||
(calc
|
||
a * b = (0 + nat.succ n) * b : Hn
|
||
... = nat.succ n * b : zero_add
|
||
... = nat.succ n * (0 + nat.succ m) : {Hm⁻¹}
|
||
... = nat.succ n * nat.succ m : zero_add
|
||
... = of_nat (nat.succ n * nat.succ m) : of_nat_mul
|
||
... = of_nat (nat.succ n * m + nat.succ n) : nat.mul_succ
|
||
... = of_nat (nat.succ (nat.succ n * m + n)) : nat.add_succ
|
||
... = 0 + nat.succ (nat.succ n * m + n) : zero_add))
|
||
|
||
theorem zero_lt_one : (0 : ℤ) < 1 := trivial
|
||
|
||
theorem not_le_of_gt {a b : ℤ} (H : a < b) : ¬ b ≤ a :=
|
||
assume Hba,
|
||
let Heq := le.antisymm (le_of_lt H) Hba in
|
||
!lt.irrefl (Heq ▸ H)
|
||
|
||
theorem lt_of_lt_of_le {a b c : ℤ} (Hab : a < b) (Hbc : b ≤ c) : a < c :=
|
||
let Hab' := le_of_lt Hab in
|
||
let Hac := le.trans Hab' Hbc in
|
||
(iff.mpr !lt_iff_le_and_ne) (and.intro Hac
|
||
(assume Heq, not_le_of_gt (Heq ▸ Hab) Hbc))
|
||
|
||
theorem lt_of_le_of_lt {a b c : ℤ} (Hab : a ≤ b) (Hbc : b < c) : a < c :=
|
||
let Hbc' := le_of_lt Hbc in
|
||
let Hac := le.trans Hab Hbc' in
|
||
(iff.mpr !lt_iff_le_and_ne) (and.intro Hac
|
||
(assume Heq, not_le_of_gt (Heq⁻¹ ▸ Hbc) Hab))
|
||
|
||
protected definition linear_ordered_comm_ring [reducible] [instance] :
|
||
algebra.linear_ordered_comm_ring int :=
|
||
⦃algebra.linear_ordered_comm_ring, int.integral_domain,
|
||
le := int.le,
|
||
le_refl := le.refl,
|
||
le_trans := @le.trans,
|
||
le_antisymm := @le.antisymm,
|
||
lt := int.lt,
|
||
le_of_lt := @le_of_lt,
|
||
lt_irrefl := lt.irrefl,
|
||
lt_of_lt_of_le := @lt_of_lt_of_le,
|
||
lt_of_le_of_lt := @lt_of_le_of_lt,
|
||
add_le_add_left := @add_le_add_left,
|
||
mul_nonneg := @mul_nonneg,
|
||
mul_pos := @mul_pos,
|
||
le_iff_lt_or_eq := le_iff_lt_or_eq,
|
||
le_total := le.total,
|
||
zero_ne_one := zero_ne_one,
|
||
zero_lt_one := zero_lt_one,
|
||
add_lt_add_left := @add_lt_add_left⦄
|
||
|
||
protected definition decidable_linear_ordered_comm_ring [reducible] [instance] :
|
||
algebra.decidable_linear_ordered_comm_ring int :=
|
||
⦃algebra.decidable_linear_ordered_comm_ring,
|
||
int.linear_ordered_comm_ring,
|
||
decidable_lt := decidable_lt⦄
|
||
|
||
/- more facts specific to int -/
|
||
|
||
theorem of_nat_nonneg (n : ℕ) : 0 ≤ of_nat n := trivial
|
||
|
||
theorem of_nat_pos {n : ℕ} (Hpos : #nat n > 0) : of_nat n > 0 :=
|
||
of_nat_lt_of_nat_of_lt Hpos
|
||
|
||
theorem of_nat_succ_pos (n : nat) : of_nat (nat.succ n) > 0 :=
|
||
of_nat_pos !nat.succ_pos
|
||
|
||
theorem exists_eq_of_nat {a : ℤ} (H : 0 ≤ a) : ∃n : ℕ, a = of_nat n :=
|
||
obtain (n : ℕ) (H1 : 0 + of_nat n = a), from le.elim H,
|
||
exists.intro n (!zero_add ▸ (H1⁻¹))
|
||
|
||
theorem exists_eq_neg_of_nat {a : ℤ} (H : a ≤ 0) : ∃n : ℕ, a = -(of_nat n) :=
|
||
have -a ≥ 0, from iff.mpr !neg_nonneg_iff_nonpos H,
|
||
obtain (n : ℕ) (Hn : -a = of_nat n), from exists_eq_of_nat this,
|
||
exists.intro n (eq_neg_of_eq_neg (Hn⁻¹))
|
||
|
||
theorem of_nat_nat_abs_of_nonneg {a : ℤ} (H : a ≥ 0) : of_nat (nat_abs a) = a :=
|
||
obtain (n : ℕ) (Hn : a = of_nat n), from exists_eq_of_nat H,
|
||
Hn⁻¹ ▸ congr_arg of_nat (nat_abs_of_nat n)
|
||
|
||
theorem of_nat_nat_abs_of_nonpos {a : ℤ} (H : a ≤ 0) : of_nat (nat_abs a) = -a :=
|
||
have -a ≥ 0, from iff.mpr !neg_nonneg_iff_nonpos H,
|
||
calc
|
||
of_nat (nat_abs a) = of_nat (nat_abs (-a)) : nat_abs_neg
|
||
... = -a : of_nat_nat_abs_of_nonneg this
|
||
|
||
theorem of_nat_nat_abs (b : ℤ) : nat_abs b = abs b :=
|
||
or.elim (le.total 0 b)
|
||
(assume H : b ≥ 0, of_nat_nat_abs_of_nonneg H ⬝ (abs_of_nonneg H)⁻¹)
|
||
(assume H : b ≤ 0, of_nat_nat_abs_of_nonpos H ⬝ (abs_of_nonpos H)⁻¹)
|
||
|
||
theorem nat_abs_abs (a : ℤ) : nat_abs (abs a) = nat_abs a :=
|
||
abs.by_cases rfl !nat_abs_neg
|
||
|
||
theorem lt_of_add_one_le {a b : ℤ} (H : a + 1 ≤ b) : a < b :=
|
||
obtain (n : nat) (H1 : a + 1 + n = b), from le.elim H,
|
||
have a + succ n = b, by rewrite [-H1, add.assoc, add.comm 1],
|
||
lt.intro this
|
||
|
||
theorem add_one_le_of_lt {a b : ℤ} (H : a < b) : a + 1 ≤ b :=
|
||
obtain (n : nat) (H1 : a + succ n = b), from lt.elim H,
|
||
have a + 1 + n = b, by rewrite [-H1, add.assoc, add.comm 1],
|
||
le.intro this
|
||
|
||
theorem lt_add_one_of_le {a b : ℤ} (H : a ≤ b) : a < b + 1 :=
|
||
lt_add_of_le_of_pos H trivial
|
||
|
||
theorem le_of_lt_add_one {a b : ℤ} (H : a < b + 1) : a ≤ b :=
|
||
have H1 : a + 1 ≤ b + 1, from add_one_le_of_lt H,
|
||
le_of_add_le_add_right H1
|
||
|
||
theorem sub_one_le_of_lt {a b : ℤ} (H : a ≤ b) : a - 1 < b :=
|
||
lt_of_add_one_le (begin rewrite algebra.sub_add_cancel, exact H end)
|
||
|
||
theorem lt_of_sub_one_le {a b : ℤ} (H : a - 1 < b) : a ≤ b :=
|
||
!sub_add_cancel ▸ add_one_le_of_lt H
|
||
|
||
theorem le_sub_one_of_lt {a b : ℤ} (H : a < b) : a ≤ b - 1 :=
|
||
le_of_lt_add_one (!sub_add_cancel⁻¹ ▸ H)
|
||
|
||
theorem lt_of_le_sub_one {a b : ℤ} (H : a ≤ b - 1) : a < b :=
|
||
!sub_add_cancel ▸ (lt_add_one_of_le H)
|
||
|
||
theorem sign_of_succ (n : nat) : sign (nat.succ n) = 1 :=
|
||
sign_of_pos (of_nat_pos !nat.succ_pos)
|
||
|
||
theorem exists_eq_neg_succ_of_nat {a : ℤ} : a < 0 → ∃m : ℕ, a = -[1+m] :=
|
||
int.cases_on a
|
||
(take (m : nat) H, absurd (of_nat_nonneg m : 0 ≤ m) (not_le_of_gt H))
|
||
(take (m : nat) H, exists.intro m rfl)
|
||
|
||
theorem eq_one_of_mul_eq_one_right {a b : ℤ} (H : a ≥ 0) (H' : a * b = 1) : a = 1 :=
|
||
have a * b > 0, by rewrite H'; apply trivial,
|
||
have b > 0, from pos_of_mul_pos_left this H,
|
||
have a > 0, from pos_of_mul_pos_right `a * b > 0` (le_of_lt `b > 0`),
|
||
or.elim (le_or_gt a 1)
|
||
(suppose a ≤ 1,
|
||
show a = 1, from le.antisymm this (add_one_le_of_lt `a > 0`))
|
||
(suppose a > 1,
|
||
assert a * b ≥ 2 * 1,
|
||
from mul_le_mul (add_one_le_of_lt `a > 1`) (add_one_le_of_lt `b > 0`) trivial H,
|
||
have false, by rewrite [H' at this]; exact this,
|
||
false.elim this)
|
||
|
||
theorem eq_one_of_mul_eq_one_left {a b : ℤ} (H : b ≥ 0) (H' : a * b = 1) : b = 1 :=
|
||
eq_one_of_mul_eq_one_right H (!mul.comm ▸ H')
|
||
|
||
theorem eq_one_of_mul_eq_self_left {a b : ℤ} (Hpos : a ≠ 0) (H : b * a = a) : b = 1 :=
|
||
eq_of_mul_eq_mul_right Hpos (H ⬝ (one_mul a)⁻¹)
|
||
|
||
theorem eq_one_of_mul_eq_self_right {a b : ℤ} (Hpos : b ≠ 0) (H : b * a = b) : a = 1 :=
|
||
eq_one_of_mul_eq_self_left Hpos (!mul.comm ▸ H)
|
||
|
||
theorem eq_one_of_dvd_one {a : ℤ} (H : a ≥ 0) (H' : a ∣ 1) : a = 1 :=
|
||
dvd.elim H'
|
||
(take b,
|
||
suppose 1 = a * b,
|
||
eq_one_of_mul_eq_one_right H this⁻¹)
|
||
|
||
theorem exists_least_of_bdd {P : ℤ → Prop} [HP : decidable_pred P]
|
||
(Hbdd : ∃ b : ℤ, ∀ z : ℤ, z ≤ b → ¬ P z)
|
||
(Hinh : ∃ z : ℤ, P z) : ∃ lb : ℤ, P lb ∧ (∀ z : ℤ, z < lb → ¬ P z) :=
|
||
begin
|
||
cases Hbdd with [b, Hb],
|
||
cases Hinh with [elt, Helt],
|
||
existsi b + of_nat (least (λ n, P (b + of_nat n)) (nat.succ (nat_abs (elt - b)))),
|
||
have Heltb : elt > b, begin
|
||
apply lt_of_not_ge,
|
||
intro Hge,
|
||
apply (Hb _ Hge) Helt
|
||
end,
|
||
have H' : P (b + of_nat (nat_abs (elt - b))), begin
|
||
rewrite [of_nat_nat_abs_of_nonneg (int.le_of_lt (iff.mpr !sub_pos_iff_lt Heltb)),
|
||
add.comm, algebra.sub_add_cancel],
|
||
apply Helt
|
||
end,
|
||
apply and.intro,
|
||
apply least_of_lt _ !lt_succ_self H',
|
||
intros z Hz,
|
||
cases em (z ≤ b) with [Hzb, Hzb],
|
||
apply Hb _ Hzb,
|
||
let Hzb' := lt_of_not_ge Hzb,
|
||
let Hpos := iff.mpr !sub_pos_iff_lt Hzb',
|
||
have Hzbk : z = b + of_nat (nat_abs (z - b)),
|
||
by rewrite [of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos), int.add.comm, algebra.sub_add_cancel],
|
||
have Hk : nat_abs (z - b) < least (λ n, P (b + of_nat n)) (nat.succ (nat_abs (elt - b))), begin
|
||
let Hz' := iff.mp !lt_add_iff_sub_lt_left Hz,
|
||
rewrite [-of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos) at Hz'],
|
||
apply lt_of_of_nat_lt_of_nat Hz'
|
||
end,
|
||
let Hk' := algebra.not_le_of_gt Hk,
|
||
rewrite Hzbk,
|
||
apply λ p, mt (ge_least_of_lt _ p) Hk',
|
||
apply nat.lt.trans Hk,
|
||
apply least_lt _ !lt_succ_self H'
|
||
end
|
||
|
||
theorem exists_greatest_of_bdd {P : ℤ → Prop} [HP : decidable_pred P]
|
||
(Hbdd : ∃ b : ℤ, ∀ z : ℤ, z ≥ b → ¬ P z)
|
||
(Hinh : ∃ z : ℤ, P z) : ∃ ub : ℤ, P ub ∧ (∀ z : ℤ, z > ub → ¬ P z) :=
|
||
begin
|
||
cases Hbdd with [b, Hb],
|
||
cases Hinh with [elt, Helt],
|
||
existsi b - of_nat (least (λ n, P (b - of_nat n)) (nat.succ (nat_abs (b - elt)))),
|
||
have Heltb : elt < b, begin
|
||
apply lt_of_not_ge,
|
||
intro Hge,
|
||
apply (Hb _ Hge) Helt
|
||
end,
|
||
have H' : P (b - of_nat (nat_abs (b - elt))), begin
|
||
rewrite [of_nat_nat_abs_of_nonneg (int.le_of_lt (iff.mpr !sub_pos_iff_lt Heltb)),
|
||
sub_sub_self],
|
||
apply Helt
|
||
end,
|
||
apply and.intro,
|
||
apply least_of_lt _ !lt_succ_self H',
|
||
intros z Hz,
|
||
cases em (z ≥ b) with [Hzb, Hzb],
|
||
apply Hb _ Hzb,
|
||
let Hzb' := lt_of_not_ge Hzb,
|
||
let Hpos := iff.mpr !sub_pos_iff_lt Hzb',
|
||
have Hzbk : z = b - of_nat (nat_abs (b - z)),
|
||
by rewrite [of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos), sub_sub_self],
|
||
have Hk : nat_abs (b - z) < least (λ n, P (b - of_nat n)) (nat.succ (nat_abs (b - elt))), begin
|
||
let Hz' := iff.mp !lt_add_iff_sub_lt_left (iff.mpr !lt_add_iff_sub_lt_right Hz),
|
||
rewrite [-of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos) at Hz'],
|
||
apply lt_of_of_nat_lt_of_nat Hz'
|
||
end,
|
||
let Hk' := algebra.not_le_of_gt Hk,
|
||
rewrite Hzbk,
|
||
apply λ p, mt (ge_least_of_lt _ p) Hk',
|
||
apply nat.lt.trans Hk,
|
||
apply least_lt _ !lt_succ_self H'
|
||
end
|
||
|
||
end int
|