a618bd7d6c
Before this commit we were using overloading for concrete structures and type classes for abstract ones. This is the first of series of commits that implement this modification
250 lines
8.6 KiB
Text
250 lines
8.6 KiB
Text
/-
|
||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn, Leonardo de Moura
|
||
-/
|
||
prelude
|
||
import init.wf init.tactic init.num
|
||
open eq.ops decidable or
|
||
|
||
notation `ℕ` := nat
|
||
|
||
namespace nat
|
||
|
||
/- basic definitions on natural numbers -/
|
||
inductive le (a : ℕ) : ℕ → Prop :=
|
||
| refl : le a a
|
||
| step : Π {b}, le a b → le a (succ b)
|
||
|
||
definition nat_has_le [instance] [reducible] [priority nat.prio]: has_le nat := has_le.mk nat.le
|
||
|
||
lemma le_refl [refl] : ∀ a : nat, a ≤ a :=
|
||
le.refl
|
||
|
||
protected definition lt [reducible] (n m : ℕ) := succ n ≤ m
|
||
definition nat_has_lt [instance] [reducible] [priority nat.prio] : has_lt nat := has_lt.mk nat.lt
|
||
|
||
definition pred [unfold 1] (a : nat) : nat :=
|
||
nat.cases_on a zero (λ a₁, a₁)
|
||
|
||
-- add is defined in init.num
|
||
|
||
protected definition sub (a b : nat) : nat :=
|
||
nat.rec_on b a (λ b₁, pred)
|
||
|
||
protected definition mul (a b : nat) : nat :=
|
||
nat.rec_on b zero (λ b₁ r, r + a)
|
||
|
||
definition nat_has_sub [instance] [reducible] [priority nat.prio] : has_sub nat :=
|
||
has_sub.mk nat.sub
|
||
|
||
definition nat_has_mul [instance] [reducible] [priority nat.prio] : has_mul nat :=
|
||
has_mul.mk nat.mul
|
||
|
||
/- properties of ℕ -/
|
||
|
||
protected definition is_inhabited [instance] : inhabited nat :=
|
||
inhabited.mk zero
|
||
|
||
protected definition has_decidable_eq [instance] : ∀ x y : nat, decidable (x = y)
|
||
| has_decidable_eq zero zero := inl rfl
|
||
| has_decidable_eq (succ x) zero := inr (by contradiction)
|
||
| has_decidable_eq zero (succ y) := inr (by contradiction)
|
||
| has_decidable_eq (succ x) (succ y) :=
|
||
match has_decidable_eq x y with
|
||
| inl xeqy := inl (by rewrite xeqy)
|
||
| inr xney := inr (λ h : succ x = succ y, by injection h with xeqy; exact absurd xeqy xney)
|
||
end
|
||
|
||
/- properties of inequality -/
|
||
|
||
theorem le_of_eq {n m : ℕ} (p : n = m) : n ≤ m := p ▸ !le.refl
|
||
|
||
theorem le_succ (n : ℕ) : n ≤ succ n := le.step !le.refl
|
||
|
||
theorem pred_le (n : ℕ) : pred n ≤ n := by cases n;repeat constructor
|
||
|
||
theorem le_succ_iff_true [simp] (n : ℕ) : n ≤ succ n ↔ true :=
|
||
iff_true_intro (le_succ n)
|
||
|
||
theorem pred_le_iff_true [simp] (n : ℕ) : pred n ≤ n ↔ true :=
|
||
iff_true_intro (pred_le n)
|
||
|
||
theorem le.trans [trans] {n m k : ℕ} (H1 : n ≤ m) : m ≤ k → n ≤ k :=
|
||
le.rec H1 (λp H2, le.step)
|
||
|
||
theorem le_succ_of_le {n m : ℕ} (H : n ≤ m) : n ≤ succ m := le.trans H !le_succ
|
||
|
||
theorem le_of_succ_le {n m : ℕ} (H : succ n ≤ m) : n ≤ m := le.trans !le_succ H
|
||
|
||
theorem le_of_lt {n m : ℕ} (H : n < m) : n ≤ m := le_of_succ_le H
|
||
|
||
theorem succ_le_succ {n m : ℕ} : n ≤ m → succ n ≤ succ m :=
|
||
le.rec !le.refl (λa b, le.step)
|
||
|
||
theorem pred_le_pred {n m : ℕ} : n ≤ m → pred n ≤ pred m :=
|
||
le.rec !le.refl (nat.rec (λa b, b) (λa b c, le.step))
|
||
|
||
theorem le_of_succ_le_succ {n m : ℕ} : succ n ≤ succ m → n ≤ m :=
|
||
pred_le_pred
|
||
|
||
theorem le_succ_of_pred_le {n m : ℕ} : pred n ≤ m → n ≤ succ m :=
|
||
nat.cases_on n le.step (λa, succ_le_succ)
|
||
|
||
theorem not_succ_le_zero (n : ℕ) : ¬succ n ≤ zero :=
|
||
by intro H; cases H
|
||
|
||
theorem succ_le_zero_iff_false (n : ℕ) : succ n ≤ zero ↔ false :=
|
||
iff_false_intro !not_succ_le_zero
|
||
|
||
theorem not_succ_le_self : Π {n : ℕ}, ¬succ n ≤ n :=
|
||
nat.rec !not_succ_le_zero (λa b c, b (le_of_succ_le_succ c))
|
||
|
||
theorem succ_le_self_iff_false [simp] (n : ℕ) : succ n ≤ n ↔ false :=
|
||
iff_false_intro not_succ_le_self
|
||
|
||
theorem zero_le : ∀ (n : ℕ), 0 ≤ n :=
|
||
nat.rec !le.refl (λa, le.step)
|
||
|
||
theorem zero_le_iff_true [simp] (n : ℕ) : 0 ≤ n ↔ true :=
|
||
iff_true_intro !zero_le
|
||
|
||
theorem lt.step {n m : ℕ} : n < m → n < succ m := le.step
|
||
|
||
theorem zero_lt_succ (n : ℕ) : 0 < succ n :=
|
||
succ_le_succ !zero_le
|
||
|
||
theorem zero_lt_succ_iff_true [simp] (n : ℕ) : 0 < succ n ↔ true :=
|
||
iff_true_intro (zero_lt_succ n)
|
||
|
||
theorem lt.trans [trans] {n m k : ℕ} (H1 : n < m) : m < k → n < k :=
|
||
le.trans (le.step H1)
|
||
|
||
theorem lt_of_le_of_lt [trans] {n m k : ℕ} (H1 : n ≤ m) : m < k → n < k :=
|
||
le.trans (succ_le_succ H1)
|
||
|
||
theorem lt_of_lt_of_le [trans] {n m k : ℕ} : n < m → m ≤ k → n < k := le.trans
|
||
|
||
theorem lt.irrefl (n : ℕ) : ¬n < n := not_succ_le_self
|
||
|
||
theorem lt_self_iff_false [simp] (n : ℕ) : n < n ↔ false :=
|
||
iff_false_intro (lt.irrefl n)
|
||
|
||
theorem self_lt_succ (n : ℕ) : n < succ n := !le.refl
|
||
|
||
theorem self_lt_succ_iff_true [simp] (n : ℕ) : n < succ n ↔ true :=
|
||
iff_true_intro (self_lt_succ n)
|
||
|
||
theorem lt.base (n : ℕ) : n < succ n := !le.refl
|
||
|
||
theorem le_lt_antisymm {n m : ℕ} (H1 : n ≤ m) (H2 : m < n) : false :=
|
||
!lt.irrefl (lt_of_le_of_lt H1 H2)
|
||
|
||
theorem le.antisymm {n m : ℕ} (H1 : n ≤ m) : m ≤ n → n = m :=
|
||
le.cases_on H1 (λa, rfl) (λa b c, absurd (lt_of_le_of_lt b c) !lt.irrefl)
|
||
|
||
theorem lt_le_antisymm {n m : ℕ} (H1 : n < m) (H2 : m ≤ n) : false :=
|
||
le_lt_antisymm H2 H1
|
||
|
||
theorem lt.asymm {n m : ℕ} (H1 : n < m) : ¬ m < n :=
|
||
le_lt_antisymm (le_of_lt H1)
|
||
|
||
theorem not_lt_zero (a : ℕ) : ¬ a < zero := !not_succ_le_zero
|
||
|
||
theorem lt_zero_iff_false [simp] (a : ℕ) : a < zero ↔ false :=
|
||
iff_false_intro (not_lt_zero a)
|
||
|
||
theorem eq_or_lt_of_le {a b : ℕ} (H : a ≤ b) : a = b ∨ a < b :=
|
||
le.cases_on H (inl rfl) (λn h, inr (succ_le_succ h))
|
||
|
||
theorem le_of_eq_or_lt {a b : ℕ} (H : a = b ∨ a < b) : a ≤ b :=
|
||
or.elim H !le_of_eq !le_of_lt
|
||
|
||
-- less-than is well-founded
|
||
definition lt.wf [instance] : well_founded lt :=
|
||
well_founded.intro (nat.rec
|
||
(!acc.intro (λn H, absurd H (not_lt_zero n)))
|
||
(λn IH, !acc.intro (λm H,
|
||
elim (eq_or_lt_of_le (le_of_succ_le_succ H))
|
||
(λe, eq.substr e IH) (acc.inv IH))))
|
||
|
||
definition measure {A : Type} : (A → ℕ) → A → A → Prop :=
|
||
inv_image lt
|
||
|
||
definition measure.wf {A : Type} (f : A → ℕ) : well_founded (measure f) :=
|
||
inv_image.wf f lt.wf
|
||
|
||
theorem succ_lt_succ {a b : ℕ} : a < b → succ a < succ b :=
|
||
succ_le_succ
|
||
|
||
theorem lt_of_succ_lt {a b : ℕ} : succ a < b → a < b :=
|
||
le_of_succ_le
|
||
|
||
theorem lt_of_succ_lt_succ {a b : ℕ} : succ a < succ b → a < b :=
|
||
le_of_succ_le_succ
|
||
|
||
definition decidable_le [instance] : ∀ a b : nat, decidable (a ≤ b) :=
|
||
nat.rec (λm, (decidable.inl !zero_le))
|
||
(λn IH m, !nat.cases_on (decidable.inr (not_succ_le_zero n))
|
||
(λm, decidable.rec (λH, inl (succ_le_succ H))
|
||
(λH, inr (λa, H (le_of_succ_le_succ a))) (IH m)))
|
||
|
||
definition decidable_lt [instance] : ∀ a b : nat, decidable (a < b) :=
|
||
λ a b, decidable_le (succ a) b
|
||
|
||
theorem lt_or_ge (a b : ℕ) : a < b ∨ a ≥ b :=
|
||
nat.rec (inr !zero_le) (λn, or.rec
|
||
(λh, inl (le_succ_of_le h))
|
||
(λh, elim (eq_or_lt_of_le h) (λe, inl (eq.subst e !le.refl)) inr)) b
|
||
|
||
definition lt_ge_by_cases {a b : ℕ} {P : Type} (H1 : a < b → P) (H2 : a ≥ b → P) : P :=
|
||
by_cases H1 (λh, H2 (elim !lt_or_ge (λa, absurd a h) (λa, a)))
|
||
|
||
definition lt.by_cases {a b : ℕ} {P : Type} (H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P :=
|
||
lt_ge_by_cases H1 (λh₁,
|
||
lt_ge_by_cases H3 (λh₂, H2 (le.antisymm h₂ h₁)))
|
||
|
||
theorem lt.trichotomy (a b : ℕ) : a < b ∨ a = b ∨ b < a :=
|
||
lt.by_cases (λH, inl H) (λH, inr (inl H)) (λH, inr (inr H))
|
||
|
||
theorem eq_or_lt_of_not_lt {a b : ℕ} (hnlt : ¬ a < b) : a = b ∨ b < a :=
|
||
or.rec_on (lt.trichotomy a b)
|
||
(λ hlt, absurd hlt hnlt)
|
||
(λ h, h)
|
||
|
||
theorem lt_succ_of_le {a b : ℕ} : a ≤ b → a < succ b :=
|
||
succ_le_succ
|
||
|
||
theorem lt_of_succ_le {a b : ℕ} (h : succ a ≤ b) : a < b := h
|
||
|
||
theorem succ_le_of_lt {a b : ℕ} (h : a < b) : succ a ≤ b := h
|
||
|
||
theorem succ_sub_succ_eq_sub [simp] (a b : ℕ) : succ a - succ b = a - b :=
|
||
nat.rec (by esimp) (λ b, congr_arg pred) b
|
||
|
||
theorem sub_eq_succ_sub_succ (a b : ℕ) : a - b = succ a - succ b :=
|
||
eq.symm !succ_sub_succ_eq_sub
|
||
|
||
theorem zero_sub_eq_zero [simp] (a : ℕ) : zero - a = zero :=
|
||
nat.rec rfl (λ a, congr_arg pred) a
|
||
|
||
theorem zero_eq_zero_sub (a : ℕ) : zero = zero - a :=
|
||
eq.symm !zero_sub_eq_zero
|
||
|
||
theorem sub_le (a b : ℕ) : a - b ≤ a :=
|
||
nat.rec_on b !le.refl (λ b₁, le.trans !pred_le)
|
||
|
||
theorem sub_le_iff_true [simp] (a b : ℕ) : a - b ≤ a ↔ true :=
|
||
iff_true_intro (sub_le a b)
|
||
|
||
theorem sub_lt {a b : ℕ} (H1 : zero < a) (H2 : zero < b) : a - b < a :=
|
||
!nat.cases_on (λh, absurd h !lt.irrefl)
|
||
(λa h, succ_le_succ (!nat.cases_on (λh, absurd h !lt.irrefl)
|
||
(λb c, eq.substr !succ_sub_succ_eq_sub !sub_le) H2)) H1
|
||
|
||
theorem sub_lt_succ (a b : ℕ) : a - b < succ a :=
|
||
lt_succ_of_le !sub_le
|
||
|
||
theorem sub_lt_succ_iff_true [simp] (a b : ℕ) : a - b < succ a ↔ true :=
|
||
iff_true_intro !sub_lt_succ
|
||
end nat
|