lean2/library/init/num.lean
Leonardo de Moura a618bd7d6c refactor(library): use type classes for encoding all arithmetic operations
Before this commit we were using overloading for concrete structures and
type classes for abstract ones.

This is the first of series of commits that implement this modification
2015-11-08 14:04:54 -08:00

131 lines
3.3 KiB
Text

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
prelude
import init.logic init.bool init.priority
open bool
definition pos_num.is_inhabited [instance] : inhabited pos_num :=
inhabited.mk pos_num.one
namespace pos_num
definition is_one (a : pos_num) : bool :=
pos_num.rec_on a tt (λn r, ff) (λn r, ff)
definition pred (a : pos_num) : pos_num :=
pos_num.rec_on a one (λn r, bit0 n) (λn r, cond (is_one n) one (bit1 r))
definition size (a : pos_num) : pos_num :=
pos_num.rec_on a one (λn r, succ r) (λn r, succ r)
definition add (a b : pos_num) : pos_num :=
pos_num.rec_on a
succ
(λn f b, pos_num.rec_on b
(succ (bit1 n))
(λm r, succ (bit1 (f m)))
(λm r, bit1 (f m)))
(λn f b, pos_num.rec_on b
(bit1 n)
(λm r, bit1 (f m))
(λm r, bit0 (f m)))
b
notation a + b := add a b
definition mul (a b : pos_num) : pos_num :=
pos_num.rec_on a
b
(λn r, bit0 r + b)
(λn r, bit0 r)
notation a * b := mul a b
definition lt (a b : pos_num) : bool :=
pos_num.rec_on a
(λ b, pos_num.cases_on b
ff
(λm, tt)
(λm, tt))
(λn f b, pos_num.cases_on b
ff
(λm, f m)
(λm, f m))
(λn f b, pos_num.cases_on b
ff
(λm, f (succ m))
(λm, f m))
b
definition le (a b : pos_num) : bool :=
lt a (succ b)
end pos_num
definition num.is_inhabited [instance] : inhabited num :=
inhabited.mk num.zero
namespace num
open pos_num
definition pred (a : num) : num :=
num.rec_on a zero (λp, cond (is_one p) zero (pos (pred p)))
definition size (a : num) : num :=
num.rec_on a (pos one) (λp, pos (size p))
definition add (a b : num) : num :=
num.rec_on a b (λpa, num.rec_on b (pos pa) (λpb, pos (pos_num.add pa pb)))
definition mul (a b : num) : num :=
num.rec_on a zero (λpa, num.rec_on b zero (λpb, pos (pos_num.mul pa pb)))
notation a + b := add a b
notation a * b := mul a b
definition le (a b : num) : bool :=
num.rec_on a tt (λpa, num.rec_on b ff (λpb, pos_num.le pa pb))
private definition psub (a b : pos_num) : num :=
pos_num.rec_on a
(λb, zero)
(λn f b,
cond (pos_num.le (bit1 n) b)
zero
(pos_num.cases_on b
(pos (bit0 n))
(λm, 2 * f m)
(λm, 2 * f m + 1)))
(λn f b,
cond (pos_num.le (bit0 n) b)
zero
(pos_num.cases_on b
(pos (pos_num.pred (bit0 n)))
(λm, pred (2 * f m))
(λm, 2 * f m)))
b
definition sub (a b : num) : num :=
num.rec_on a zero (λpa, num.rec_on b a (λpb, psub pa pb))
notation a ≤ b := le a b
notation a - b := sub a b
end num
-- the coercion from num to nat is defined here,
-- so that it can already be used in init.tactic
namespace nat
protected definition prio := num.add std.priority.default 100
protected definition add (a b : nat) : nat :=
nat.rec_on b a (λ b₁ r, succ r)
definition nat_has_add [reducible] [instance] [priority nat.prio] : has_add nat := has_add.mk nat.add
definition of_num [coercion] (n : num) : nat :=
num.rec zero
(λ n, pos_num.rec (succ zero) (λ n r, r + r + (succ zero)) (λ n r, r + r) n) n
end nat
attribute nat.of_num [reducible] -- of_num is also reducible if namespace "nat" is not opened