lean2/hott/algebra/field.hlean
2015-05-23 14:05:06 +10:00

464 lines
19 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Robert Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.field
Authors: Robert Lewis
Structures with multiplicative and additive components, including division rings and fields.
The development is modeled after Isabelle's library.
Ported from the standard library
-/
import algebra.ring
open core
namespace algebra
variable {A : Type}
-- in division rings, 1 / 0 = 0
structure division_ring [class] (A : Type) extends ring A, has_inv A, zero_ne_one_class A :=
(mul_inv_cancel : Π{a}, a ≠ zero → mul a (inv a) = one)
(inv_mul_cancel : Π{a}, a ≠ zero → mul (inv a) a = one)
--(inv_zero : inv zero = zero)
section division_ring
variables [s : division_ring A] {a b c : A}
include s
definition divide (a b : A) : A := a * b⁻¹
infix `/` := divide
-- only in this file
local attribute divide [reducible]
definition mul_inv_cancel (H : a ≠ 0) : a * a⁻¹ = 1 :=
division_ring.mul_inv_cancel H
definition inv_mul_cancel (H : a ≠ 0) : a⁻¹ * a = 1 :=
division_ring.inv_mul_cancel H
definition inv_eq_one_div : a⁻¹ = 1 / a := !one_mul⁻¹
-- the following are only theorems if we assume inv_zero here
/- definition inv_zero : 0⁻¹ = 0 := !division_ring.inv_zero
definition one_div_zero : 1 / 0 = 0 :=
calc
1 / 0 = 1 * 0⁻¹ : refl
... = 1 * 0 : division_ring.inv_zero A
... = 0 : mul_zero
-/
definition div_eq_mul_one_div : a / b = a * (1 / b) :=
by rewrite [↑divide, one_mul]
-- definition div_zero : a / 0 = 0 := by rewrite [div_eq_mul_one_div, one_div_zero, mul_zero]
definition mul_one_div_cancel (H : a ≠ 0) : a * (1 / a) = 1 :=
by rewrite [-inv_eq_one_div, (mul_inv_cancel H)]
definition one_div_mul_cancel (H : a ≠ 0) : (1 / a) * a = 1 :=
by rewrite [-inv_eq_one_div, (inv_mul_cancel H)]
definition div_self (H : a ≠ 0) : a / a = 1 := mul_inv_cancel H
definition one_div_one : 1 / 1 = (1:A) :=
div_self (ne.symm zero_ne_one)
definition mul_div_assoc : (a * b) / c = a * (b / c) := !mul.assoc
definition one_div_ne_zero (H : a ≠ 0) : 1 / a ≠ 0 :=
assume H2 : 1 / a = 0,
have C1 : 0 = (1:A), from inverse (by rewrite [-(mul_one_div_cancel H), H2, mul_zero]),
absurd C1 zero_ne_one
-- definition ne_zero_of_one_div_ne_zero (H : 1 / a ≠ 0) : a ≠ 0 :=
-- assume Ha : a = 0, absurd (Ha⁻¹ ▸ one_div_zero) H
definition inv_one_eq : 1⁻¹ = (1:A) :=
by rewrite [-mul_one, (inv_mul_cancel (ne.symm zero_ne_one))]
definition div_one : a / 1 = a :=
by rewrite [↑divide, inv_one_eq, mul_one]
definition zero_div : 0 / a = 0 := !zero_mul
-- note: integral domain has a "mul_ne_zero". Discrete fields are int domains.
definition mul_ne_zero' (Ha : a ≠ 0) (Hb : b ≠ 0) : a * b ≠ 0 :=
assume H : a * b = 0,
have C1 : a = 0, by rewrite [-mul_one, -(mul_one_div_cancel Hb), -mul.assoc, H, zero_mul],
absurd C1 Ha
definition mul_ne_zero_comm (H : a * b ≠ 0) : b * a ≠ 0 :=
have H2 : a ≠ 0 × b ≠ 0, from ne_zero_and_ne_zero_of_mul_ne_zero H,
mul_ne_zero' (prod.pr2 H2) (prod.pr1 H2)
-- make "left" and "right" versions?
definition eq_one_div_of_mul_eq_one (H : a * b = 1) : b = 1 / a :=
have H2 : a ≠ 0, from
(assume aeq0 : a = 0,
have B : 0 = (1:A), by rewrite [-(zero_mul b), -aeq0, H],
absurd B zero_ne_one),
show b = 1 / a, from inverse (calc
1 / a = (1 / a) * 1 : mul_one
... = (1 / a) * (a * b) : H
... = (1 / a) * a * b : mul.assoc
... = 1 * b : one_div_mul_cancel H2
... = b : one_mul)
-- which one is left and which is right?
definition eq_one_div_of_mul_eq_one_left (H : b * a = 1) : b = 1 / a :=
have H2 : a ≠ 0, from
(assume A : a = 0,
have B : 0 = 1, from inverse (calc
1 = b * a : inverse H
... = b * 0 : A
... = 0 : mul_zero),
absurd B zero_ne_one),
show b = 1 / a, from inverse (calc
1 / a = 1 * (1 / a) : one_mul
... = b * a * (1 / a) : H
... = b * (a * (1 / a)) : mul.assoc
... = b * 1 : mul_one_div_cancel H2
... = b : mul_one)
definition one_div_mul_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) : (1 / a) * (1 / b) = 1 / (b * a) :=
have H : (b * a) * ((1 / a) * (1 / b)) = 1, by
rewrite [mul.assoc, -(mul.assoc a), (mul_one_div_cancel Ha), one_mul, (mul_one_div_cancel Hb)],
eq_one_div_of_mul_eq_one H
definition one_div_neg_one_eq_neg_one : (1:A) / (-1) = -1 :=
have H : (-1) * (-1) = 1, by rewrite [-neg_eq_neg_one_mul, neg_neg],
inverse (eq_one_div_of_mul_eq_one H)
definition one_div_neg_eq_neg_one_div (H : a ≠ 0) : 1 / (- a) = - (1 / a) :=
have H1 : -1 ≠ 0, from
(assume H2 : -1 = 0, absurd (inverse (calc
1 = -(-1) : neg_neg
... = -0 : H2
... = (0:A) : neg_zero)) zero_ne_one),
calc
1 / (- a) = 1 / ((-1) * a) : neg_eq_neg_one_mul
... = (1 / a) * (1 / (- 1)) : one_div_mul_one_div H H1
... = (1 / a) * (-1) : one_div_neg_one_eq_neg_one
... = - (1 / a) : mul_neg_one_eq_neg
definition div_neg_eq_neg_div (Ha : a ≠ 0) : b / (- a) = - (b / a) :=
calc
b / (- a) = b * (1 / (- a)) : inv_eq_one_div
... = b * -(1 / a) : one_div_neg_eq_neg_one_div Ha
... = -(b * (1 / a)) : neg_mul_eq_mul_neg
... = - (b * a⁻¹) : inv_eq_one_div
definition neg_div (Ha : a ≠ 0) : (-b) / a = - (b / a) :=
by rewrite [neg_eq_neg_one_mul, mul_div_assoc, -neg_eq_neg_one_mul]
definition neg_div_neg_eq_div (Hb : b ≠ 0) : (-a) / (-b) = a / b :=
by rewrite [(div_neg_eq_neg_div Hb), (neg_div Hb), neg_neg]
definition div_div (H : a ≠ 0) : 1 / (1 / a) = a :=
inverse (eq_one_div_of_mul_eq_one_left (mul_one_div_cancel H))
definition eq_of_invs_eq (Ha : a ≠ 0) (Hb : b ≠ 0) (H : 1 / a = 1 / b) : a = b :=
by rewrite [-(div_div Ha), H, (div_div Hb)]
-- oops, the analogous definition in group is called inv_mul, but it *should* be called
-- mul_inv, in which case, we will have to rename this one
definition mul_inv_eq (Ha : a ≠ 0) (Hb : b ≠ 0) : (b * a)⁻¹ = a⁻¹ * b⁻¹ :=
have H1 : b * a ≠ 0, from mul_ne_zero' Hb Ha,
inverse (calc
a⁻¹ * b⁻¹ = (1 / a) * b⁻¹ : inv_eq_one_div
... = (1 / a) * (1 / b) : inv_eq_one_div
... = (1 / (b * a)) : one_div_mul_one_div Ha Hb
... = (b * a)⁻¹ : inv_eq_one_div)
definition mul_div_cancel (Hb : b ≠ 0) : a * b / b = a :=
by rewrite [↑divide, mul.assoc, (mul_inv_cancel Hb), mul_one]
definition div_mul_cancel (Hb : b ≠ 0) : a / b * b = a :=
by rewrite [↑divide, mul.assoc, (inv_mul_cancel Hb), mul_one]
definition div_add_div_same : a / c + b / c = (a + b) / c := !right_distrib⁻¹
definition inv_mul_add_mul_inv_eq_inv_add_inv (Ha : a ≠ 0) (Hb : b ≠ 0) :
(1 / a) * (a + b) * (1 / b) = 1 / a + 1 / b :=
by rewrite [(left_distrib (1 / a)), (one_div_mul_cancel Ha), right_distrib, one_mul,
mul.assoc, (mul_one_div_cancel Hb), mul_one, add.comm]
definition inv_mul_sub_mul_inv_eq_inv_add_inv (Ha : a ≠ 0) (Hb : b ≠ 0) :
(1 / a) * (b - a) * (1 / b) = 1 / a - 1 / b :=
by rewrite [(mul_sub_left_distrib (1 / a)), (one_div_mul_cancel Ha), mul_sub_right_distrib,
one_mul, mul.assoc, (mul_one_div_cancel Hb), mul_one, one_mul]
definition div_eq_one_iff_eq (Hb : b ≠ 0) : a / b = 1 ↔ a = b :=
iff.intro
(assume H1 : a / b = 1, inverse (calc
b = 1 * b : one_mul
... = a / b * b : H1
... = a : div_mul_cancel Hb))
(assume H2 : a = b, calc
a / b = b / b : H2
... = 1 : div_self Hb)
definition eq_div_iff_mul_eq (Hc : c ≠ 0) : a = b / c ↔ a * c = b :=
iff.intro
(assume H : a = b / c, by rewrite [H, (div_mul_cancel Hc)])
(assume H : a * c = b, by rewrite [-(mul_div_cancel Hc), H])
definition add_div_eq_mul_add_div (Hc : c ≠ 0) : a + b / c = (a * c + b) / c :=
have H : (a + b / c) * c = a * c + b, by rewrite [right_distrib, (div_mul_cancel Hc)],
(iff.elim_right (eq_div_iff_mul_eq Hc)) H
definition mul_mul_div (Hc : c ≠ 0) : a = a * c * (1 / c) :=
calc
a = a * 1 : mul_one
... = a * (c * (1 / c)) : mul_one_div_cancel Hc
... = a * c * (1 / c) : mul.assoc
-- There are many similar rules to these last two in the Isabelle library
-- that haven't been ported yet. Do as necessary.
end division_ring
structure field [class] (A : Type) extends division_ring A, comm_ring A
section field
variables [s : field A] {a b c d: A}
include s
local attribute divide [reducible]
definition one_div_mul_one_div' (Ha : a ≠ 0) (Hb : b ≠ 0) : (1 / a) * (1 / b) = 1 / (a * b) :=
by rewrite [(one_div_mul_one_div Ha Hb), mul.comm b]
definition div_mul_right (Hb : b ≠ 0) (H : a * b ≠ 0) : a / (a * b) = 1 / b :=
let Ha : a ≠ 0 := prod.pr1 (ne_zero_and_ne_zero_of_mul_ne_zero H) in
inverse (calc
1 / b = 1 * (1 / b) : one_mul
... = (a * a⁻¹) * (1 / b) : mul_inv_cancel Ha
... = a * (a⁻¹ * (1 / b)) : mul.assoc
... = a * ((1 / a) * (1 / b)) :inv_eq_one_div
... = a * (1 / (b * a)) : one_div_mul_one_div Ha Hb
... = a * (1 / (a * b)) : mul.comm
... = a * (a * b)⁻¹ : inv_eq_one_div)
definition div_mul_left (Ha : a ≠ 0) (H : a * b ≠ 0) : b / (a * b) = 1 / a :=
let H1 : b * a ≠ 0 := mul_ne_zero_comm H in
by rewrite [mul.comm a, (div_mul_right Ha H1)]
definition mul_div_cancel_left (Ha : a ≠ 0) : a * b / a = b :=
by rewrite [mul.comm a, (mul_div_cancel Ha)]
definition mul_div_cancel' (Hb : b ≠ 0) : b * (a / b) = a :=
by rewrite [mul.comm, (div_mul_cancel Hb)]
definition one_div_add_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) : 1 / a + 1 / b = (a + b) / (a * b) :=
have H [visible] : a * b ≠ 0, from (mul_ne_zero' Ha Hb),
by rewrite [add.comm, -(div_mul_left Ha H), -(div_mul_right Hb H), ↑divide, -right_distrib]
definition div_mul_div (Hb : b ≠ 0) (Hd : d ≠ 0) : (a / b) * (c / d) = (a * c) / (b * d) :=
by rewrite [↑divide, 2 mul.assoc, (mul.comm b⁻¹), mul.assoc, (mul_inv_eq Hd Hb)]
definition mul_div_mul_left (Hb : b ≠ 0) (Hc : c ≠ 0) : (c * a) / (c * b) = a / b :=
have H [visible] : c * b ≠ 0, from mul_ne_zero' Hc Hb,
by rewrite [-(div_mul_div Hc Hb), (div_self Hc), one_mul]
definition mul_div_mul_right (Hb : b ≠ 0) (Hc : c ≠ 0) : (a * c) / (b * c) = a / b :=
by rewrite [(mul.comm a), (mul.comm b), (mul_div_mul_left Hb Hc)]
definition div_mul_eq_mul_div : (b / c) * a = (b * a) / c :=
by rewrite [↑divide, mul.assoc, (mul.comm c⁻¹), -mul.assoc]
-- this one is odd -- I am not sure what to call it, but again, the prefix is right
definition div_mul_eq_mul_div_comm (Hc : c ≠ 0) : (b / c) * a = b * (a / c) :=
by rewrite [(div_mul_eq_mul_div), -(one_mul c), -(div_mul_div (ne.symm zero_ne_one) Hc), div_one, one_mul]
definition div_add_div (Hb : b ≠ 0) (Hd : d ≠ 0) :
(a / b) + (c / d) = ((a * d) + (b * c)) / (b * d) :=
have H [visible] : b * d ≠ 0, from mul_ne_zero' Hb Hd,
by rewrite [-(mul_div_mul_right Hb Hd), -(mul_div_mul_left Hd Hb), div_add_div_same]
definition div_sub_div (Hb : b ≠ 0) (Hd : d ≠ 0) :
(a / b) - (c / d) = ((a * d) - (b * c)) / (b * d) :=
by rewrite [↑sub, neg_eq_neg_one_mul, -mul_div_assoc, (div_add_div Hb Hd),
-mul.assoc, (mul.comm b), mul.assoc, -neg_eq_neg_one_mul]
definition mul_eq_mul_of_div_eq_div (Hb : b ≠ 0) (Hd : d ≠ 0) (H : a / b = c / d) : a * d = c * b :=
by rewrite [-mul_one, mul.assoc, (mul.comm d), -mul.assoc, -(div_self Hb),
-(div_mul_eq_mul_div_comm Hb), H, (div_mul_eq_mul_div), (div_mul_cancel Hd)]
definition one_div_div (Ha : a ≠ 0) (Hb : b ≠ 0) : 1 / (a / b) = b / a :=
have H : (a / b) * (b / a) = 1, from calc
(a / b) * (b / a) = (a * b) / (b * a) : div_mul_div Hb Ha
... = (a * b) / (a * b) : mul.comm
... = 1 : div_self (mul_ne_zero' Ha Hb),
inverse (eq_one_div_of_mul_eq_one H)
definition div_div_eq_mul_div (Hb : b ≠ 0) (Hc : c ≠ 0) : a / (b / c) = (a * c) / b :=
by rewrite [div_eq_mul_one_div, (one_div_div Hb Hc), -mul_div_assoc]
definition div_div_eq_div_mul (Hb : b ≠ 0) (Hc : c ≠ 0) : (a / b) / c = a / (b * c) :=
by rewrite [div_eq_mul_one_div, (div_mul_div Hb Hc), mul_one]
definition div_div_div_div (Hb : b ≠ 0) (Hc : c ≠ 0) (Hd : d ≠ 0) : (a / b) / (c / d) = (a * d) / (b * c) :=
by rewrite [(div_div_eq_mul_div Hc Hd), (div_mul_eq_mul_div), (div_div_eq_div_mul Hb Hc)]
-- remaining to transfer from Isabelle fields: ordered fields
end field
structure discrete_field [class] (A : Type) extends field A :=
(has_decidable_eq : decidable_eq A)
(inv_zero : inv zero = zero)
attribute discrete_field.has_decidable_eq [instance]
section discrete_field
variable [s : discrete_field A]
include s
variables {a b c d : A}
-- many of the theorems in discrete_field are the same as theorems in field or division ring,
-- but with fewer hypotheses since 0⁻¹ = 0 and equality is decidable.
-- they are named with '. Is there a better convention?
definition discrete_field.eq_zero_or_eq_zero_of_mul_eq_zero
(x y : A) (H : x * y = 0) : x = 0 ⊎ y = 0 :=
decidable.by_cases
(assume H : x = 0, sum.inl H)
(assume H1 : x ≠ 0,
sum.inr (by rewrite [-one_mul, -(inv_mul_cancel H1), mul.assoc, H, mul_zero]))
definition discrete_field.to_integral_domain [instance] [reducible] [coercion] :
integral_domain A :=
⦃ integral_domain, s,
eq_zero_or_eq_zero_of_mul_eq_zero := discrete_field.eq_zero_or_eq_zero_of_mul_eq_zero⦄
definition inv_zero : 0⁻¹ = (0 : A) := !discrete_field.inv_zero
definition one_div_zero : 1 / 0 = (0:A) :=
calc
1 / 0 = 1 * 0⁻¹ : refl
... = 1 * 0 : discrete_field.inv_zero A
... = 0 : mul_zero
definition div_zero : a / 0 = 0 := by rewrite [div_eq_mul_one_div, one_div_zero, mul_zero]
definition ne_zero_of_one_div_ne_zero (H : 1 / a ≠ 0) : a ≠ 0 :=
assume Ha : a = 0, absurd (Ha⁻¹ ▸ one_div_zero) H
definition inv_zero_imp_zero (H : 1 / a = 0) : a = 0 :=
decidable.by_cases
(assume Ha, Ha)
(assume Ha, empty.elim ((one_div_ne_zero Ha) H))
-- the following could all go in "discrete_division_ring"
definition one_div_mul_one_div'' : (1 / a) * (1 / b) = 1 / (b * a) :=
decidable.by_cases
(assume Ha : a = 0,
by rewrite [Ha, div_zero, zero_mul, -(@div_zero A s 1), mul_zero b])
(assume Ha : a ≠ 0,
decidable.by_cases
(assume Hb : b = 0,
by rewrite [Hb, div_zero, mul_zero, -(@div_zero A s 1), zero_mul a])
(assume Hb : b ≠ 0, one_div_mul_one_div Ha Hb))
definition one_div_neg_eq_neg_one_div' : 1 / (- a) = - (1 / a) :=
decidable.by_cases
(assume Ha : a = 0, by rewrite [Ha, neg_zero, 2 div_zero, neg_zero])
(assume Ha : a ≠ 0, one_div_neg_eq_neg_one_div Ha)
definition neg_div' : (-b) / a = - (b / a) :=
decidable.by_cases
(assume Ha : a = 0, by rewrite [Ha, 2 div_zero, neg_zero])
(assume Ha : a ≠ 0, neg_div Ha)
definition neg_div_neg_eq_div' : (-a) / (-b) = a / b :=
decidable.by_cases
(assume Hb : b = 0, by rewrite [Hb, neg_zero, 2 div_zero])
(assume Hb : b ≠ 0, neg_div_neg_eq_div Hb)
definition div_div' : 1 / (1 / a) = a :=
decidable.by_cases
(assume Ha : a = 0, by rewrite [Ha, 2 div_zero])
(assume Ha : a ≠ 0, div_div Ha)
definition eq_of_invs_eq' (H : 1 / a = 1 / b) : a = b :=
decidable.by_cases
(assume Ha : a = 0,
have Hb : b = 0, from inv_zero_imp_zero (by rewrite [-H, Ha, div_zero]),
Hb⁻¹ ▸ Ha)
(assume Ha : a ≠ 0,
have Hb : b ≠ 0, from ne_zero_of_one_div_ne_zero (H ▸ (one_div_ne_zero Ha)),
eq_of_invs_eq Ha Hb H)
definition mul_inv' : (b * a)⁻¹ = a⁻¹ * b⁻¹ :=
decidable.by_cases
(assume Ha : a = 0, by rewrite [Ha, mul_zero, 2 inv_zero, zero_mul])
(assume Ha : a ≠ 0,
decidable.by_cases
(assume Hb : b = 0, by rewrite [Hb, zero_mul, 2 inv_zero, mul_zero])
(assume Hb : b ≠ 0, mul_inv_eq Ha Hb))
-- the following are specifically for fields
definition one_div_mul_one_div''' : (1 / a) * (1 / b) = 1 / (a * b) :=
by rewrite [(one_div_mul_one_div''), mul.comm b]
definition div_mul_right' (Ha : a ≠ 0) : a / (a * b) = 1 / b :=
decidable.by_cases
(assume Hb : b = 0, by rewrite [Hb, mul_zero, 2 div_zero])
(assume Hb : b ≠ 0, div_mul_right Hb (mul_ne_zero Ha Hb))
definition div_mul_left' (Hb : b ≠ 0) : b / (a * b) = 1 / a :=
by rewrite [mul.comm a, div_mul_right' Hb]
definition div_mul_div' : (a / b) * (c / d) = (a * c) / (b * d) :=
decidable.by_cases
(assume Hb : b = 0, by rewrite [Hb, div_zero, zero_mul, -(@div_zero A s (a * c)), zero_mul])
(assume Hb : b ≠ 0,
decidable.by_cases
(assume Hd : d = 0, by rewrite [Hd, div_zero, mul_zero, -(@div_zero A s (a * c)), mul_zero])
(assume Hd : d ≠ 0, div_mul_div Hb Hd))
definition mul_div_mul_left' (Hc : c ≠ 0) : (c * a) / (c * b) = a / b :=
decidable.by_cases
(assume Hb : b = 0, by rewrite [Hb, mul_zero, 2 div_zero])
(assume Hb : b ≠ 0, mul_div_mul_left Hb Hc)
definition mul_div_mul_right' (Hc : c ≠ 0) : (a * c) / (b * c) = a / b :=
by rewrite [(mul.comm a), (mul.comm b), (mul_div_mul_left' Hc)]
-- this one is odd -- I am not sure what to call it, but again, the prefix is right
definition div_mul_eq_mul_div_comm' : (b / c) * a = b * (a / c) :=
decidable.by_cases
(assume Hc : c = 0, by rewrite [Hc, div_zero, zero_mul, -(mul_zero b), -(@div_zero A s a)])
(assume Hc : c ≠ 0, div_mul_eq_mul_div_comm Hc)
definition one_div_div' : 1 / (a / b) = b / a :=
decidable.by_cases
(assume Ha : a = 0, by rewrite [Ha, zero_div, 2 div_zero])
(assume Ha : a ≠ 0,
decidable.by_cases
(assume Hb : b = 0, by rewrite [Hb, 2 div_zero, zero_div])
(assume Hb : b ≠ 0, one_div_div Ha Hb))
definition div_div_eq_mul_div' : a / (b / c) = (a * c) / b :=
by rewrite [div_eq_mul_one_div, one_div_div', -mul_div_assoc]
definition div_div_eq_div_mul' : (a / b) / c = a / (b * c) :=
by rewrite [div_eq_mul_one_div, div_mul_div', mul_one]
definition div_div_div_div' : (a / b) / (c / d) = (a * d) / (b * c) :=
by rewrite [div_div_eq_mul_div', div_mul_eq_mul_div, div_div_eq_div_mul']
end discrete_field
end algebra
/-
decidable.by_cases
(assume Ha : a = 0, sorry)
(assume Ha : a ≠ 0, sorry)
-/