lean2/hott/init/pointed.hlean
Floris van Doorn f983724cf6 feat(pointed): merge pointed2 into pointed
We move the basic notions of pointed types into init.pointed, to avoid cycles in the import graph. Also adds pointed versions of pi and sigma, with corresponding notation
2016-04-11 09:45:59 -07:00

110 lines
3.2 KiB
Text

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
The definition of pointed types. This file is here to avoid circularities in the import graph
-/
prelude
import init.trunc
open eq equiv is_equiv is_trunc
structure pointed [class] (A : Type) :=
(point : A)
structure pType :=
(carrier : Type)
(Point : carrier)
notation `Type*` := pType
namespace pointed
attribute pType.carrier [coercion]
variables {A : Type}
definition pt [reducible] [unfold 2] [H : pointed A] := point A
definition Point [reducible] [unfold 1] (A : Type*) := pType.Point A
abbreviation carrier [unfold 1] (A : Type*) := pType.carrier A
protected definition Mk [constructor] {A : Type} (a : A) := pType.mk A a
protected definition MK [constructor] (A : Type) (a : A) := pType.mk A a
protected definition mk' [constructor] (A : Type) [H : pointed A] : Type* :=
pType.mk A (point A)
definition pointed_carrier [instance] [constructor] (A : Type*) : pointed A :=
pointed.mk (Point A)
end pointed
open pointed
section
universe variable u
structure ptrunctype (n : trunc_index) extends trunctype.{u} n, pType.{u}
end
notation n `-Type*` := ptrunctype n
abbreviation pSet [parsing_only] := 0-Type*
notation `Set*` := pSet
namespace pointed
protected definition ptrunctype.mk' [constructor] (n : trunc_index)
(A : Type) [pointed A] [is_trunc n A] : n-Type* :=
ptrunctype.mk A _ pt
protected definition pSet.mk [constructor] := @ptrunctype.mk (-1.+1)
protected definition pSet.mk' [constructor] := ptrunctype.mk' (-1.+1)
definition ptrunctype_of_trunctype [constructor] {n : trunc_index} (A : n-Type) (a : A) : n-Type* :=
ptrunctype.mk A _ a
definition ptrunctype_of_pType [constructor] {n : trunc_index} (A : Type*) (H : is_trunc n A)
: n-Type* :=
ptrunctype.mk A _ pt
definition pSet_of_Set [constructor] (A : Set) (a : A) : Set* :=
ptrunctype.mk A _ a
definition pSet_of_pType [constructor] (A : Type*) (H : is_set A) : Set* :=
ptrunctype.mk A _ pt
attribute ptrunctype._trans_of_to_pType ptrunctype.to_pType ptrunctype.to_trunctype [unfold 2]
end pointed
/- pointed maps -/
structure pmap (A B : Type*) :=
(to_fun : A → B)
(resp_pt : to_fun (Point A) = Point B)
namespace pointed
abbreviation respect_pt [unfold 3] := @pmap.resp_pt
notation `map₊` := pmap
infix ` →* `:30 := pmap
attribute pmap.to_fun [coercion]
end pointed open pointed
/- pointed homotopies -/
structure phomotopy {A B : Type*} (f g : A →* B) :=
(homotopy : f ~ g)
(homotopy_pt : homotopy pt ⬝ respect_pt g = respect_pt f)
namespace pointed
variables {A B : Type*} {f g : A →* B}
infix ` ~* `:50 := phomotopy
abbreviation to_homotopy_pt [unfold 5] := @phomotopy.homotopy_pt
abbreviation to_homotopy [coercion] [unfold 5] (p : f ~* g) : Πa, f a = g a :=
phomotopy.homotopy p
/- pointed equivalences -/
structure pequiv (A B : Type*) extends equiv A B, pmap A B
attribute pequiv._trans_of_to_pmap pequiv._trans_of_to_equiv pequiv.to_pmap pequiv.to_equiv
[unfold 3]
infix ` ≃* `:25 := pequiv
attribute pequiv.to_pmap [coercion]
attribute pequiv.to_is_equiv [instance]
end pointed